Nickel-catalyzed reductive cross-coupling of polyfluoroarenes with alkyl electrophiles by site-selective C–F bond activation
-
* Corresponding author.
E-mail address: shiz@nju.edu.cn (Z. Shi).
Citation:
Longlong Xi, Liting Du, Zhuangzhi Shi. Nickel-catalyzed reductive cross-coupling of polyfluoroarenes with alkyl electrophiles by site-selective C–F bond activation[J]. Chinese Chemical Letters,
;2022, 33(9): 4287-4292.
doi:
10.1016/j.cclet.2022.01.077
A.R. Murphy, J.M. Frechet, Chem. Rev. 107 (2007) 1066–1096.
doi: 10.1021/cr0501386
S. Purser, P.R. Moore, S. Swallow, et al., Chem. Soc. Rev. 37 (2008) 320–330.
doi: 10.1039/B610213C
S. Preshlock, M. Tredwell, V. Gouverneur, Chem. Rev. 116 (2016) 719–766.
doi: 10.1021/acs.chemrev.5b00493
H.B. Mei, A.M. Remete, Y.P. Zou, et al., Chin. Chem. Lett. 31 (2020) 2401–2413.
doi: 10.1016/j.cclet.2020.03.050
X.X. Ma, Q.L. Song, Chem. Soc. Rev. 49 (2020) 9197–9219.
doi: 10.1039/D0CS00604A
V.V. Grushin, Acc. Chem. Res. 43 (2010) 160–171.
doi: 10.1021/ar9001763
T. Liang, C.N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 52 (2013) 8214–8264.
doi: 10.1002/anie.201206566
A.J. Lin, C.B. Huehls, J. Yang, J. Org. Chem. Front. 1 (2014) 434–438.
doi: 10.1039/C4QO00020J
Y. Li, Y. Wu, G.L. Li, et al., Adv. Synth. Catal. 356 (2014) 1412–1418.
doi: 10.1002/adsc.201400101
X.Y. Yang, T. Wu, R.J. Phipps, et al., Chem. Rev. 115 (2015) 826–870.
doi: 10.1021/cr500277b
M.G. Campbell, T. Ritter, Chem. Rev. 115 (2015) 612–633.
doi: 10.1021/cr500366b
R. Szpera, D.F.J. Moseley, L.B. Smith, et al., Angew. Chem. Int. Ed. 58 (2019) 14824–14848.
doi: 10.1002/anie.201814457
J.L. Kiplinger, T.G. Richmond, C.E. Osterberg, Chem. Rev. 94 (1994) 373–431.
doi: 10.1021/cr00026a005
T. Braun, R.N. Perutz, Chem. Commun. (2002) 2749–2757.
W.D. Jones, Dalton Trans. (2003) 3991–3995.
H. Amii, K. Uneyama, Chem. Rev. 109 (2009) 2119–2183.
doi: 10.1021/cr800388c
T. Ahrens, J. Kohlmann, M. Ahrens, et al., Chem. Rev. 115 (2015) 931–972.
doi: 10.1021/cr500257c
O. Eisenstein, J. Milani, R.N. Perutz, Chem. Rev. 117 (2017) 8710–8753.
doi: 10.1021/acs.chemrev.7b00163
T. Fujita, K. Fuchibe, J. Ichikawa, Angew. Chem. Int. Ed. 58 (2019) 390–402.
doi: 10.1002/anie.201805292
M.Y. Wang, Z.Z. Shi, Chem. Rev. 120 (2020) 7348–7398.
doi: 10.1021/acs.chemrev.9b00384
M.Y. Wang, Z.Z. Shi, Chem. Lett. 50 (2021) 553–559.
doi: 10.1246/cl.200826
B.L. Zhao, T. Rogge, L. Ackermann, et al., Chem. Soc. Rev. 50 (2021) 8903–8953.
doi: 10.1039/C9CS00571D
B.L. Zhao, B. Prabagar, Z.Z. Shi, Chem 7 (2021) 2585–2634.
doi: 10.1016/j.chempr.2021.08.001
P.P. Tian, C. Feng, T.P. Loh, Nat. Commun. 6 (2015) 7472.
doi: 10.1038/ncomms8472
J. Zhou, M.W. Kuntze-Fechner, R. Bertermann, et al., J. Am. Chem. Soc. 138 (2016) 5250–5253.
doi: 10.1021/jacs.6b02337
K. Chen, N. Berg, R. Gschwind, et al., J. Am. Chem. Soc. 139 (2017) 18444–18447.
doi: 10.1021/jacs.7b10755
H.B. Wang, N.T. Jui, J. Am. Chem. Soc. 140 (2018) 163–166.
doi: 10.1021/jacs.7b12590
J.F. Hu, Y. Zhao, Z.Z. Shi, Nat. Catal. 1 (2018) 860–869.
doi: 10.1038/s41929-018-0147-9
P. Gao, C.K. Yuan, Y. Zhao, et al., Chem 4 (2018) 2201–2211.
doi: 10.1016/j.chempr.2018.07.003
Y.M. Tian, X.N. Guo, M.W.K. Fechner, et al., J. Am. Chem. Soc. 140 (2018) 17612–17623.
doi: 10.1021/jacs.8b09790
W.G. Xu, H.M. Jiang, H.W. Ong, et al., Angew. Chem. Int. Ed. 59 (2020) 4009–4016.
doi: 10.1002/anie.201911819
T.W. Butcher, J.L. Yang, W.M. Amberg, Nature 583 (2020) 548–553.
doi: 10.1038/s41586-020-2399-1
W.J. Yue, C.S. Day, R. Martin, J. Am. Chem. Soc. 143 (2021) 6395–6400.
doi: 10.1021/jacs.1c03126
C. Zhang, Z.Y. Lin, Y.F. Zhu, et al., J. Am. Chem. Soc. 143 (2021) 11602–11610.
doi: 10.1021/jacs.1c04531
Y.J. Yu, F.L. Zhang, T.Y. Peng, et al., Science 371 (2021) 1232–1240.
doi: 10.1126/science.abg0781
C.D. Nielsen, F.G. Zivkovic, F. Schoenebeck, J. Am. Chem. Soc. 143 (2021) 13029–13033.
doi: 10.1021/jacs.1c07780
T.J. O'Connor, B.K. Mai, J. Nafie, J. Am. Chem. Soc. 143 (2021) 13759–13768.
doi: 10.1021/jacs.1c05769
Y.C. Luo, F.F. Tong, Y.X. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 13971–13979.
doi: 10.1021/jacs.1c07459
N.M. Aston, P. Bamborough, J.B. Buckton, et al., J. Med. Chem. 52 (2009) 6257–6269.
doi: 10.1021/jm9004779
T.E. Wang, B.J. Alfonso, J.A. Love, Org. Lett. 9 (2007) 5629–5631.
doi: 10.1021/ol702591b
A.D. Sun, K. Leung, A.D. Restivo, et al., Chem. Eur. J. 20 (2014) 3162–3168.
doi: 10.1002/chem.201303809
Y.Q. Sun, H.J. Sun, J. Jia, et al., Organometallics 33 (2014) 1079–1081.
doi: 10.1021/om4011609
D.H. Yu, C.S. Wang, C. Yao, Org. Lett. 16 (2014) 5544–5547.
doi: 10.1021/ol502499q
A. Arora, J.D. Weave, Acc. Chem. Res. 49 (2016) 2273–2283.
doi: 10.1021/acs.accounts.6b00259
J. Xie, M. Rudolph, F. Rominger, et al., Angew. Chem. Int. Ed. 56 (2017) 7266–7270.
doi: 10.1002/anie.201700135
X.H. Li, B. Fu, Q. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 23056–23060.
doi: 10.1002/anie.202010492
X. Sun, T. Ritter, Angew. Chem. Int. Ed. 60 (2021) 10557–10562.
doi: 10.1002/anie.202015596
D.A. Everson, D.J. Weix, J. Org. Chem. 79 (2014) 4793–4798.
doi: 10.1021/jo500507s
C.E.I. Knappke, S. Grupe, D. Gartner, et al., Chem. Eur. J. 20 (2014) 6828–6842.
doi: 10.1002/chem.201402302
T. Moragas, A. Correa, R. Martin, et al., Chem. Eur. J. 20 (2014) 8242–8258.
doi: 10.1002/chem.201402509
D.J. Weix, Acc. Chem. Res. 48 (2015) 1767–1775.
doi: 10.1021/acs.accounts.5b00057
J. Gu, X. Wang, W.C. Xue, et al., Org. Chem. Front. 2 (2015) 1411–1421.
doi: 10.1039/C5QO00224A
X. Wang, Y.J. Dai, H.G. Gong, Top. Curr. Chem. 372 (2016) 43.
K.E. Poremba, S.E. Dibrell, S.E. Reisman, ACS Catal. 10 (2020) 8237–8246.
doi: 10.1021/acscatal.0c01842
W.C. Xue, X. Jia, X. Wang, et al., Chem. Soc. Rev. 50 (2021) 4162–4184.
doi: 10.1039/D0CS01107J
D.A. Everson, R. Shrestha, D.J. Weix, J. Am. Chem. Soc. 132 (2010) 920–921.
doi: 10.1021/ja9093956
Y. Zhao, D.J. Weix, J. Am. Chem. Soc. 136 (2014) 48–51.
doi: 10.1021/ja410704d
K.M.M. Huihui, J.A. Caputo, Z. Melchor, et al., J. Am. Chem. Soc. 138 (2016) 5016–5019.
doi: 10.1021/jacs.6b01533
J. Sheng, H.Q. Ni, H.R. Zhang, et al., Angew. Chem. Int. Ed. 57 (2018) 7634–7639.
doi: 10.1002/anie.201803228
K. Wang, Z.T. Ding, Z.J. Zhou, et al., J. Am. Chem. Soc. 140 (2018) 12364–12368.
doi: 10.1021/jacs.8b08190
L.Y. Lv, Z.H. Qiu, J.B. Li, et al., Nat. Commun. 9 (2018) 4739.
T.J. Steiman, J.Y. Liu, A. Mengiste, et al., J. Am. Chem. Soc. 142 (2020) 7598–7605.
doi: 10.1021/jacs.0c01724
Z.J. Li, W.X. Sun, X.X. Wang, et al., J. Am. Chem. Soc. 143 (2021) 3536–3543.
doi: 10.1021/jacs.0c13093
P. Guo, K. Wang, W.J. Jin, et al., J. Am. Chem. Soc. 143 (2021) 513–523.
doi: 10.1021/jacs.0c12462
R.D. He, C.L. Li, Q.Q. Pan, et al., J. Am. Chem. Soc. 141 (2019) 12481–12486.
doi: 10.1021/jacs.9b05224
Z.X. Tian, J.B. Qiao, G.L. Xu, et al., J. Am. Chem. Soc. 141 (2019) 7637–7643.
doi: 10.1021/jacs.9b03863
J.B. Qiao, Y.Q. Zhang, Q.W. Yao, et al., J. Am. Chem. Soc. 143 (2021) 12961–12967.
doi: 10.1021/jacs.1c05670
A.H. Cherney, N.T. Kadunce, S.E. Reisman, J. Am. Chem. Soc. 135 (2013) 7442–7445.
doi: 10.1021/ja402922w
Y. Zhao, D.J. Weix, J. Am. Chem. Soc. 137 (2015) 3237–3240.
doi: 10.1021/jacs.5b01909
K.E. Poremba, N.T. Kadunce, N. Suzuki, et al., J. Am. Chem. Soc. 139 (2017) 5684–5687.
doi: 10.1021/jacs.7b01705
B.P. Woods, M. Orlandi, C.Y. Huang, et al., J. Am. Chem. Soc. 139 (2017) 5688–5691.
doi: 10.1021/jacs.7b03448
X.F. Wei, W. Shu, A. García-Domínguez, et al., J. Am. Chem. Soc. 142 (2020) 13515–13522.
doi: 10.1021/jacs.0c05254
T.Z. Lin, Y.Y. Gu, P.C. Qian, et al., Nat. Commun. 11 (2020) 5638.
doi: 10.1038/s41467-020-19194-x
Y.Z. Zhan, N. Xiao, W. Shu, Nat. Commun. 12 (2021) 928.
doi: 10.1038/s41467-021-21083-w
X. Lu, Y. Wang, B. Zhang, et al., J. Am. Chem. Soc. 139 (2017) 12632–12637.
doi: 10.1021/jacs.7b06469
C. Zhu, Z.Y. Liu, L.N. Tang, et al., Nat. Commun. 11 (2020) 4860.
doi: 10.1038/s41467-020-18658-4
Q. Pan, Y.Y. Ping, Y.F. Wang, et al., J. Am. Chem. Soc. 143 (2021) 10282–10291.
A. Das, N. Chatani, ACS Catal. 11 (2021) 12915–12930.
doi: 10.1021/acscatal.1c03896
M. Tobisu, T. Xu, T. Shimasaki, et al., J. Am. Chem. Soc. 133 (2011) 19505–19511.
Z. Chen, C.Y. He, Z.S. Yin, et al., Angew. Chem. Int. Ed. 52 (2013) 5813.
W.H. Guo, Q.Q. Min, J.W. Gu, et al., Angew. Chem. Int. Ed. 54 (2015) 9075–9078.
I. Nohira, S. Liu, R.P. Bai, J. Am. Chem. Soc. 142 (2020) 17306–17311.
I. Nohira, N. Chatani, ACS Catal. 11 (2021) 4644–4649.
I. Colon, D.R. Kelsey, J. Org. Chem. 51 (1986) 2627–2637.
M.R. Prinsell, D.A. Everson, D.J. Weix, Chem. Commun. 46 (2010) 5743–5745.
A.H. Cherney, S.E. Reisman, J. Am. Chem. Soc. 136 (2014) 14365–14368.
N. Suzuki, J.L. Hofstra, K.E. Poremba, Org. Lett. 19 (2017) 2150–2153.
L. Hu, X. Liu, X.B. Liao, Angew. Chem. Int. Ed. 55 (2016) 9743–9747.
F.L. Chen, K. Chen, Y. Zhang, et al., J. Am. Chem. Soc. 139 (2017) 13929–13935.
L. Peng, Z.Q. Li, G.Y. Yin, Org. Lett. 20 (2018) 1880–1883.
N.T. Kadunce, S.E. Reisman, J. Am. Chem. Soc. 137 (2015) 10480–10483.
J.L. Hofstra, A.H. Cherney, C.M. Ordner, et al., J. Am. Chem. Soc. 140 (2018) 139–142.
Y. Min, J. Sheng, J.L. Yu, et al., Angew. Chem. Int. Ed. 60 (2021) 9947–9952.
M.Q. Konev, L.E. Hanna, E.R. Jarvo, Angew. Chem. Int. Ed. 55 (2016) 6730–6733.
D.A. Everson, B.A. Jones, D.J. Weix, J. Am. Chem. Soc. 134 (2012) 6146–6159.
S. Biswas, D.J. Weix, J. Am. Chem. Soc. 135 (2013) 16192–16197.
Q.H. Ren, F. Jiang, H.G. Gong, J. Organomet. Chem. 770 (2014) 130–135.
X.Q. Wu, J.P. Qu, Y.F. Chen, J. Am. Chem. Soc. 142 (2020) 15654–15660.
Jialin Huang , Liying Fu , Zhanyong Tang , Xiaoqiang Ma , Xingda Zhao , Depeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361
Fuyang Yue , Mingxing Li , Fei Yuan , Hongjian Song , Yuxiu Liu , Qingmin Wang . Deboronative cross-coupling enabled by nickel metallaphotoredox catalysis. Chinese Chemical Letters, 2025, 36(12): 111053-. doi: 10.1016/j.cclet.2025.111053
Zhenkang Ai , Hui Chen , Xuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Xinghao Cai , Chen Ma , Ying Kang , Yuqiang Ren , Xue Meng , Wei Lu , Shiming Fan , Shouxin Liu . Nickel-catalyzed C(sp2)–H alkynylation of free α-substituted benzylamines using a transient directing group. Chinese Chemical Letters, 2025, 36(10): 110901-. doi: 10.1016/j.cclet.2025.110901
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Shaobin He , Xiaoyun Guo , Qionghua Zheng , Huanran Shen , Yuan Xu , Fenglin Lin , Jincheng Chen , Haohua Deng , Yiming Zeng , Wei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096
Yixiao Zhao , Gavin Chit Tsui , Qilong Shen . Key intermediates in CuⅠ to CuⅢ catalytic cycle for ethoxycarbonyl difluoro- methylation. Chinese Chemical Letters, 2025, 36(12): 111051-. doi: 10.1016/j.cclet.2025.111051
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Tian-Zhang Wang , Le-Yu Tang , Yu-Qiu Guan , Lingfei Hu , Gang Lu , Yu-Feng Liang . Nickel-catalyzed reductive alkynylation of ketoimines via unstrained C–C bond activation. Chinese Chemical Letters, 2025, 36(11): 111050-. doi: 10.1016/j.cclet.2025.111050
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
Jiyang Liu , Xiangzhang Tao , Zhenlei Zou , Jia Xu , Hui Shu , Yi Pan , Weigang Zhang , Shengyang Ni , Yi Wang . Modular and practical synthesis of gem-difluoroalkenes via consecutive Ni-catalyzed reductive cross-coupling. Chinese Chemical Letters, 2025, 36(7): 110461-. doi: 10.1016/j.cclet.2024.110461
Zhilian Liu , Wengui Wang , Hongxiao Yang , Yu Cui , Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012
Dong-Sheng Deng , Su-Qin Tang , Yong-Tu Yuan , Ding-Xiong Xie , Zhi-Yuan Zhu , Yue-Mei Huang , Yun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417