High sensitivity ratiometric fluorescence temperature sensing using the microencapsulation of CsPbBr3 and K2SiF6: Mn4+ phosphor
-
* Corresponding author.
E-mail address: xichen@xmu.edu.cn (X. Chen).
Citation:
Jingwen Jin, Jie Lin, Yipeng Huang, Linchun Zhang, Yaqi Jiang, Dongjie Tian, Fangyuan Lin, Yiru Wang, Xi Chen. High sensitivity ratiometric fluorescence temperature sensing using the microencapsulation of CsPbBr3 and K2SiF6: Mn4+ phosphor[J]. Chinese Chemical Letters,
;2022, 33(11): 4798-4802.
doi:
10.1016/j.cclet.2022.01.017
X. Zhu, J. Li, X. Qiu, et al., Nat. Commun. 9 (2018) 2176–2187.
doi: 10.1038/s41467-018-04571-4
T. Bai, N. Gu, Small 12 (2016) 4590–4610.
doi: 10.1002/smll.201600665
I.E. Kolesnikov, D.V. Mamonova, M.A. Kurochkin, E.Y. Kolesnikov, E. Lähderanta, J. Lumin. 231 (2021) 117828.
doi: 10.1016/j.jlumin.2020.117828
M.G. Nikolić, Ž. Antić, S. Ćulubrk, J.M. Nedeljković, M.D. Dramićanin, Sens. Actuators B: Chem. 201 (2014) 46–50.
doi: 10.1016/j.snb.2014.04.108
L. Tong, X. Li, J. Zhang, et al., Opt. Express 25 (2017) 16047–16058.
doi: 10.1364/OE.25.016047
H. Zheng, B. Chen, H. Yu, et al., J. Colloid Interface Sci. 420 (2014) 27–34.
doi: 10.1016/j.jcis.2013.12.059
H. Zheng, B. Chen, H. Yu, et al., Sens. Actuators B: Chem. 234 (2016) 286–293.
doi: 10.1016/j.snb.2016.04.162
S. Wang, J. Jiang, Y. Lu, et al., J. Lumin. 226 (2020) 117418.
doi: 10.1016/j.jlumin.2020.117418
Y. Park, C. Koo, H.Y. Chen, A. Han, D.H. Son, Nanoscale 5 (2013) 4944–4950.
doi: 10.1039/c3nr00290j
Y. Zhou, D. Zhang, J. Zeng, N. Gan, J. Cuan, Talanta 181 (2018) 410–415.
doi: 10.1016/j.talanta.2018.01.024
Q. Luo, H. Wang, X. Yin, L. Wang, Sci. China Mater. 62 (2019) 1065–1070.
doi: 10.1007/s40843-018-9396-9
P.C. Tsai, C.P. Epperla, J.S. Huang, et al., Angew. Chem. Int. Ed. 56 (2017) 3025–3030.
doi: 10.1002/anie.201700357
N. Rakov, S.A. Vieira, Q.P.S. Silva, G.S. Maciel, Sens. Actuators B: Chem. 209 (2015) 407–412.
doi: 10.1016/j.snb.2014.11.119
J. Liu, Y. Zhao, X. Li, et al., Cryst. Growth Des. 20 (2019) 454–459.
X.D. Wang, X.H. Song, C.Y. He, et al., Anal. Chem. 83 (2011) 2434–2437.
doi: 10.1021/ac200196y
S. Xu, W. Ouyang, P. Xie, et al., Anal. Chem. 89 (2017) 1617–1623.
doi: 10.1021/acs.analchem.6b03711
C. Wang, T. Hu, T. Thomas, et al., Nanoscale 10 (2018) 21809–21817.
doi: 10.1039/C8NR07445C
J.S. Niezgoda, B.J. Foley, A.Z. Chen, J.J. Choi, ACS Energy Lett. 2 (2017) 1043–1049.
doi: 10.1021/acsenergylett.7b00258
Y. Wei, Z. Cheng, J. Lin, Chem. Soc. Rev. 48 (2019) 310–350.
doi: 10.1039/C8CS00740C
T.L. Doane, K.L. Ryan, L. Pathade, et al., ACS Nano 10 (2016) 5864–5872.
doi: 10.1021/acsnano.6b00806
X. Li, Y. Yu, J. Hong, et al., J. Lumin. 219 (2020) 116897.
doi: 10.1016/j.jlumin.2019.116897
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, et al., Nano Lett. 15 (2015) 3692–3696.
doi: 10.1021/nl5048779
A. Swarnkar, R. Chulliyil, V.K. Ravi, et al., Angew. Chem. Int. Ed. 54 (2015) 15424–15428.
doi: 10.1002/anie.201508276
Q.A. Akkerman, V. D'Innocenzo, S. Accornero, et al., J. Am. Chem. Soc. 137 (2015) 10276–10281.
doi: 10.1021/jacs.5b05602
Y. Wang, J. He, H. Chen, et al., Adv. Mater. 28 (2016) 10710–10717.
doi: 10.1002/adma.201603964
B. Zhuang, Y. Liu, S. Yuan, et al., Nanoscale 11 (2019) 15010–15016.
doi: 10.1039/C9NR05831A
J. Guo, B. Zhou, C. Yang, Q. Dai, L. Kong, Adv. Funct. Mater. 29 (2019) 1902898.
doi: 10.1002/adfm.201902898
Y. Wang, J. He, H. Chen, et al., Adv. Mater. 28 (2016) 10710–10717.
doi: 10.1002/adma.201603964
B.T. Diroll, G. Nedelcu, M.V. Kovalenko, et al., Adv. Funct. Mater. 27 (2017) 1606750.
doi: 10.1002/adfm.201606750
X. Li, Y. Wu, S. Zhang, et al., Adv. Funct. Mater. 26 (2016) 2435–2445.
doi: 10.1002/adfm.201600109
Chenghe Yang , Yi Lü , Rui Liu . The Rise to Fame of Digital PCR. University Chemistry, 2025, 40(4): 340-345. doi: 10.12461/PKU.DXHX202406111
Min Liu , Bin Feng , Feiyi Chu , Duoyang Fan , Fan Zheng , Fei Chen , Wenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043
Na Wang , Wang Luo , Huaiyi Shen , Huakai Li , Zejiang Xu , Zhiyuan Yue , Chao Shi , Hengyun Ye , Leping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696
Xiao-Tong Sun , Hao-Fei Ni , Yi Zhang , Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212
Husitu Lin , Shuangkun Zhang , Dianfa Zhao , Yongkang Wang , Wei Liu , Fan Yang , Jianjun Liu , Dongpeng Yan , Zhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795
Shangda Qu , Yiming Yuan , Xu Ye , Wentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
Ying-Yu Zhang , Jia-Qi Luo , Yan Han , Wan-Ying Zhang , Yi Zhang , Hai-Feng Lu , Da-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
Keke Han , Wenjun Rao , Xiuli You , Haina Zhang , Xing Ye , Zhenhong Wei , Hu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4−, ReO4−). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809
Yunfa Dong , Shijie Zhong , Yuhui He , Zhezhi Liu , Shengyu Zhou , Qun Li , Yashuai Pang , Haodong Xie , Yuanpeng Ji , Yuanpeng Liu , Jiecai Han , Weidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192
Weihong Ding , Kaiyue Song , Xianglong Li , Xiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
Ren Shen , Yanmei Fang , Chunxiao Yang , Quande Wei , Pui-In Mak , Rui P. Martins , Yanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143
Zhoupeng Zheng , Shengyi Gong , Qianhua Li , Shiya Zhang , Guoqiang Feng . Lipid droplets and gallbladder targeted fluorescence probe for ratiometric NO imaging in gallstones disease models. Chinese Chemical Letters, 2025, 36(5): 110191-. doi: 10.1016/j.cclet.2024.110191
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249