Citation:
K. S. Aneeshkumar, Jinsen Tian, Jun Shen. Metallic glasses and metallic glass nanostructures for functional electrocatalytic applications[J]. Chinese Chemical Letters,
;2022, 33(5): 2327-2344.
doi:
10.1016/j.cclet.2021.12.013
-
This brief review reports the recent advancement of metallic glasses and metallic glass nanostructures for functional electrocatalytic applications. Metallic glasses (MGs) or amorphous metals result from quenching the melts at a high cooling rate (e.g., 106 K/s), bypassing crystallization. Metallic glasses are devoid of long-range translational order, no defects like grain boundaries, and multiple elements included. Due to these unique structural features, MG's show distinct and valuable mechanical, physical and chemical properties and therefore were widely studied as a structural material for decades. Even though MGs were proposed for catalytic applications earlier, a comprehensive study or attempt to apply these materials successfully in electrocatalytic applications are few since the intrinsic surface area is comparably lesser. A rejuvenated interest among the research community for applying various novel strategies in catalytic applications of MGs is highlighted in the present review. Theoretical approaches using density functional theory (DFT) and high-throughput screening assisted with machine learning paradigm advances the discovery of new MGs, which demonstrated high potential for catalytic applications. We focus on the basic features and recent advances in the MGs for catalytic applications like electrocatalytic water splitting reactions like HER, OER, fuel cell reactions like ORR, alcohol oxidation reactions like MOR, EOR, and degradation of harmful organic dyes from the industrial effluents. The presently advancing strategies for enhancing the performance of these metallic glass electrocatalysts through nanostructuring and high-throughput screening are discussed. The unique atomic-scale structural mechanism of the metallic glasses, which can favor the development of high-performance electrocatalysts even comparable to currently available precious-metal-based catalysts, will be discussed. Finally, we also give future directions on designing novel and superior metallic glass-based advanced catalysts.
-
-
-
[1]
W. Klement, R.H. Willens, P.O.L. Duwez, Nature 187(1960) 869-870. doi: 10.1038/187869b0
-
[2]
A.L. Greer, Science 267(1995) 1947-1953. doi: 10.1126/science.267.5206.1947
-
[3]
M.Z. Ma, R.P. Liu, Y. Xiao, et al., Mater. Sci. Eng. A 386(2004) 326-330. doi: 10.1016/S0921-5093(04)00973-6
-
[4]
M.F. Ashby, A.L. Greer, Scr. Mater. 54(2006) 321-326. doi: 10.1016/j.scriptamat.2005.09.051
-
[5]
H.F. Li, Y.F. Zheng, Acta Biomater 36(2016) 1-20. doi: 10.1016/j.actbio.2016.03.047
-
[6]
Y.C. Hu, C. Sun, C. Sun, ChemCatChem 11(2019) 2401-2414. doi: 10.1002/cctc.201900293
-
[7]
L.C. Zhang, S.X. Liang, Chem. Asian J. 13(2018) 3575-3592. doi: 10.1002/asia.201801082
-
[8]
Y.Q. Cheng, E. Ma, H.W. Sheng, Phys. Rev. Lett. 102(2009) 245501. doi: 10.1103/PhysRevLett.102.245501
-
[9]
H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Nature 439(2006) 419-425. doi: 10.1038/nature04421
-
[10]
Y. Yang, J. Zhou, F. Zhu, et al., Nature 592(2021) 60-64. doi: 10.1038/s41586-021-03354-0
-
[11]
A. Hirata, P. Guan, T. Fujita, et al., Nat. Mater. 10(2011) 28-33. doi: 10.1038/nmat2897
-
[12]
A. Hiratal. J. Kang, T. Fujita, et al., Science 341(2013) 376-379. doi: 10.1126/science.1232450
-
[13]
Y. Hirotsu, T.G. Nieh, A. Hirata, T. Ohkubo, N Tanaka, Phys. Rev. B 73(2006) 012205. doi: 10.1103/PhysRevB.73.012205
-
[14]
L. Tian, Y.Q. Cheng, Z.W. Shan, et al., Nat. Commun. 3(2012) 609. doi: 10.1038/ncomms1619
-
[15]
T. Zhang, Q. Yang, Y. Ji, et al., Chin. Sci. Bull. 56(2011) 3972-3977. doi: 10.1007/s11434-011-4765-8
-
[16]
Z. Jia, X. Duan, W. Zhang, et al., Sci. Rep. 6(2016) 38520. doi: 10.1038/srep38520
-
[17]
G. Kumar, H.X. Tang, J. Schroers, Nature 457(2009) 868-872. doi: 10.1038/nature07718
-
[18]
L. Liu, M. Hasan, G. Kumar, Nanoscale 6(2014) 2027-2036. doi: 10.1039/c3nr05645g
-
[19]
H.B. Yu, Y. Luo, K. Samwer, Adv. Mater. 25(2013) 5904-5908. doi: 10.1002/adma.201302700
-
[20]
Z.J. Wang, M.X. Li, J.H. Yu, et al., Adv. Mater. 32(2020) 1906384. doi: 10.1002/adma.201906384
-
[21]
S. Pauly, L. Löber, R. Petters, et al., Mater. Today 16(2013) 37-41. doi: 10.1016/j.mattod.2013.01.018
-
[22]
C. Yang, C. Zhang, W. Xing, L. Liu, Intermetallics 94(2018) 22-28. doi: 10.1016/j.intermet.2017.12.018
-
[23]
B.H.R. Suryanto, Y. Wang, R.K. Hocking, W. Adamson, C. Zhao, Nat. Commun. 10(2019) 5599. doi: 10.1038/s41467-019-13415-8
-
[24]
C. Sun, J.A. Alonso, J. Bian, Adv. Energy Mater. 11(2021) 2000459. doi: 10.1002/aenm.202000459
-
[25]
Y. Li, H. Wang, L. Xie, et al., J. Am. Chem. Soc. 133(2011) 7296-7299. doi: 10.1021/ja201269b
-
[26]
S. Yuan, S.Y. Pang, J. Hao, Appl. Phys. Rev. 7(2020) 21304. doi: 10.1063/5.0005141
-
[27]
I.K. Mishra, H. Zhou, J. Sun, et al., Mater. Today Phys. 4(2018) 1-6. doi: 10.1016/j.mtphys.2018.01.001
-
[28]
J.S. Kang, J. Kim, M.J. Lee, et al., Adv. Sci. 5(2018) 1700601. doi: 10.1002/advs.201700601
-
[29]
T. Guo, Y. Song, Z. Sun, et al., J. Energy Chem. 42(2020) 34-42. doi: 10.1016/j.jechem.2019.06.007
-
[30]
G. Giuffredi, A. Mezzetti, A. Perego, et al., Small 16(2020) 2004047. doi: 10.1002/smll.202004047
-
[31]
J. Zhang, C. Zhang, Z. Wang, et al., Small 14(2018) 1703098. doi: 10.1002/smll.201703098
-
[32]
D.H. Kweon, M.S. Okyay, S.J. Kim, et al., Nat. Commun. 11(2020) 1278. doi: 10.1038/s41467-020-15069-3
-
[33]
J. Yu, T. Zhang, Y. Sun, et al., SmallACS Appl. Mater. Interfaces 12(2020) 12783-12792. doi: 10.1021/acsami.9b21927
-
[34]
Y. Zheng, Y. Jiao, Y. Zhu, et al., Nat. Commun. 5(2014) 3783. doi: 10.1038/ncomms4783
-
[35]
A. Li, Y. Sun, T. Yao, H. Han, Chem. Eur. J. 24(2018) 18334-18355. doi: 10.1002/chem.201803749
-
[36]
Y.C. Hu, Y.Z. Wang, R. Su, et al., Adv. Mater. 28(2016) 10293-10297. doi: 10.1002/adma.201603880
-
[37]
Z. Jia, K. Nomoto, Q. Wang, et al., Adv. Funct. Mater. 31(2021) 2101586. doi: 10.1002/adfm.202101586
-
[38]
M. Carmo, R.C. Sekol, S. Ding, et al., ACS Nano 5(2011) 2979-2983. doi: 10.1021/nn200033c
-
[39]
J. Wang, L. You, Z. Li, et al., J. Mater. Sci. Technol. 73(2021) 145-150. doi: 10.1016/j.jmst.2020.09.016
-
[40]
M. Zhao, K. Abe, S. Yamaura, Y. Yamamoto, N. Asao, Chem. Mater. 26(2014) 1056-1061. doi: 10.1021/cm403185h
-
[41]
X. Yang, W. Xu, S. Cao, et al., Appl. Catal. B: Environ. 246(2019) 156-165. doi: 10.1016/j.apcatb.2019.01.030
-
[42]
R. Li, X. Liu, R. Wu, et al., Adv. Mater. 31(2019) 1904989. doi: 10.1002/adma.201904989
-
[43]
R. Jiang, Z. Cui, W. Xu, et al., Electrochim. Acta 328(2019) 135082. doi: 10.1016/j.electacta.2019.135082
-
[44]
M. Luo, W. Peng, Y. Zhao, et al., Scr. Mater. 191(2021) 56-61. doi: 10.1016/j.scriptamat.2020.09.011
-
[45]
Y. Zhu, Y. Pan, W. Dai, T. Lu, ACS Appl. Energy Mater. 3(2020) 1319-1327. doi: 10.1021/acsaem.9b01563
-
[46]
K.S. Aneeshkumar, J. Tian, J. Shen, J. Alloys Compd. 886(2021) 161270. doi: 10.1016/j.jallcom.2021.161270
-
[47]
K.S. Aneeshkumar, J. Tseng, X. Liu, et al., RSC Adv. 11(2021) 7369-7380. doi: 10.1039/D0RA10418C
-
[48]
H.W. Liang, S. Brüller, R. Dong, et al., Nat. Commun. 6(2015) 7992. doi: 10.1038/ncomms8992
-
[49]
Y. Yan, C. Wang, Z. Huang, et al., J. Mater. Chem. A 9(2021) 5415-5424. doi: 10.1039/D0TA10235K
-
[50]
F. Chu, B. Han, K. Edalati, et al., Scr. Mater. 204(2021) 114145. doi: 10.1016/j.scriptamat.2021.114145
-
[51]
F. Zhang, J. Wu, W. Jiang, Q. Hu, B. Zhang, ACS Appl. Mater. Interfaces 9(2017) 31340-31344. doi: 10.1021/acsami.7b09222
-
[52]
Y. Tan, F. Zhu, H. Wang, et al., Adv. Mater. Interfaces 4(2017) 1601086. doi: 10.1002/admi.201601086
-
[53]
K. Wu, Y. Meng, J. Xu, et al., Scr. Mater. 188(2020) 135-139. doi: 10.1016/j.scriptamat.2020.07.040
-
[54]
C.C.L. McCrory, S. Jung, I.M. Ferrer, et al., J. Am. Chem. Soc. 137(2015) 4347-4357. doi: 10.1021/ja510442p
-
[55]
S. Jiang, L. Zhu, Z. Yang, Y. Wang, Electrochim. Acta 368(2021) 137618. doi: 10.1016/j.electacta.2020.137618
-
[56]
F. Hu, S. Zhu, S. Chen, et al., Adv. Mater. 29(2017) 1606570. doi: 10.1002/adma.201606570
-
[57]
A. Pozio, F. Zaza, A. Masci, R.F. Silva, J. Power Sources 179(2008) 631-639. doi: 10.1016/j.jpowsour.2008.01.038
-
[58]
X. Han, S. Feng, S. Chen, et al., Int. J. Hydrogen Energy 45(2020) 3132-3144. doi: 10.1016/j.ijhydene.2019.11.174
-
[59]
R.C. Sekol, G. Kumar, M. Carmo, et al., Small 9(2013) 2081-2085. doi: 10.1002/smll.201201647
-
[60]
X. Wu, F. Chen, N. Zhang, et al., J. Mater. Chem: A 4(2016) 3527-3537. doi: 10.1039/C5TA09266C
-
[61]
R.C. Sekol, M. Carmo, G. Kumar, et al., Int. J. Hydrogen Energy 38(2013) 11248-11255. doi: 10.1016/j.ijhydene.2013.06.017
-
[62]
B. Sarac, T. Karazehir, Y.P. Ivanov, et al., Nanoscale 12(2020) 22586-22595. doi: 10.1039/D0NR06372J
-
[63]
T.A. Phan, M. Hara, H. Oguchi, et al., Microelectron. Eng. 135(2015) 28-31. doi: 10.1016/j.mee.2015.02.043
-
[64]
M. Jung, E. Lee, D. Kim, et al., Npj Flex. Electron. 3(2019) 8. doi: 10.1038/s41528-019-0051-7
-
[65]
N. Nishiyama, K. Amiya, A. Inoue, J. Non. Cryst. Solids 353(2007) 3615-3621. doi: 10.1016/j.jnoncrysol.2007.05.170
-
[66]
Y. Hayashi, H. Yamazaki, D. Ono, et al., Int. J. Hydrogen Energy 43(2018) 9438-9445. doi: 10.1016/j.ijhydene.2018.03.149
-
[67]
J. Yan, L. Qian, W. Gao, et al., Sci. Rep. 7(2017) 43051. doi: 10.1038/srep43051
-
[68]
X. Qin, Z. Li, Z. Zhu, et al., J. Mater. Sci. Technol. 34(2018) 2290-2296. doi: 10.1016/j.jmst.2018.04.012
-
[69]
Z. Lv, Y. Yan, C. Yuan, et al., Mater. Des. 194(2020) 108876. doi: 10.1016/j.matdes.2020.108876
-
[70]
C. Yang, C. Zhang, Z.J. Chen, et al., ACS Appl. Mater. Interfaces 13(2021) 7227-7237. doi: 10.1021/acsami.0c20832
-
[71]
S.X. Liang, Z. Jia, Y.J. Liu, et al., Adv. Mater. 30(2018) 1802764. doi: 10.1002/adma.201802764
-
[72]
S. Xie, P. Huang, J.J. Kruzic, et al., Sci. Rep. 6(2016) 21947. doi: 10.1038/srep21947
-
[73]
V. Hasannaeimi, S. Mukherjee, Sci. Rep. 9(2019) 12136. doi: 10.1038/s41598-019-48582-7
-
[74]
S. Ding, Y. Liu, Y. Li, et al., Nat. Mater. 13(2014) 494-500. doi: 10.1038/nmat3939
-
[75]
J. Greeley, T.F. Jaramillo, J. Bonde, et al., Nat. Mater. 5(2006) 909-913. doi: 10.1038/nmat1752
-
[76]
M.X. Li, S.F. Zhao, Z. Lu, et al., Nature 569(2019) 99-103. doi: 10.1038/s41586-019-1145-z
-
[77]
J. Li, H.S. Stein, K. Sliozberg, et al., J. Mater. Chem. A 5(2017) 67-72. doi: 10.1039/C6TA08088J
-
[78]
S. Cheng, J. Zhu, J. Shen, X. Wei, J. Alloys Compd. 872(2021) 159684. doi: 10.1016/j.jallcom.2021.159684
-
[79]
J. Fu, Z. Huang, J. Yang, J. Ma, J. Shen, J. Non. Cryst. Solids 558(2021) 120682. doi: 10.1016/j.jnoncrysol.2021.120682
-
[80]
D.J. Wang, Z.H. Li, M.A. Rahman, J. Shen, Langmuir 29(2013) 8108-8115. doi: 10.1021/la4010449
-
[81]
D. Wang, Y. An, S. Gao, Appl. Surf. Sci. 506(2020) 144871. doi: 10.1016/j.apsusc.2019.144871
-
[82]
W. Yan, I. Richard, G. Kurtuldu, et al., Nat. Nanotechnol. 15(2020) 875-882. doi: 10.1038/s41565-020-0747-9
-
[83]
M. Meng, R. Li, L. Zuo, et al., Scr. Mater. 199(2021) 113884. doi: 10.1016/j.scriptamat.2021.113884
-
[84]
M. Fang, W. Gao, G. Dong, et al., Nano Energy 27(2016) 247-254. doi: 10.1016/j.nanoen.2016.07.005
-
[85]
J.Q. Wang, Y.H. Liu, M.W. Chen, et al., Adv. Funct. Mater. 22(2012) 2567-2570. doi: 10.1002/adfm.201103015
-
[86]
D.J. Wang, Z.H. Li, Y.L. An, et al., Int. J. Hydrogen Energy 37(2012) 8240-8248. doi: 10.1016/j.ijhydene.2012.02.051
-
[87]
M.T. Kiani, C.M. Barr, S. Xu, et al., Nano Lett. 20(2020) 6481-6487. doi: 10.1021/acs.nanolett.0c02177
-
[88]
M.T. Kiani, K. Hattar, X.W. Gu, ACS Appl. Mater. Interfaces 12(2020) 40910-40916. doi: 10.1021/acsami.0c10664
-
[89]
A.S. Argon, Acta Metall 27(1979) 47-58. doi: 10.1016/0001-6160(79)90055-5
-
[90]
V. Hasannaeimi, X. Wang, R. Salloom, et al., ACS Appl. Energy Mater. 3(2020) 12099-12107. doi: 10.1021/acsaem.0c02221
-
[91]
X. Wang, S.I. Choi, L.T. Roling, et al., Nat. Commun. 6(2015) 7594. doi: 10.1038/ncomms8594
-
[92]
Z. Ding, J. Bian, S. Shuang, et al., Adv. Sustain. Syst. 4(2020) 1900105. doi: 10.1002/adsu.201900105
-
[93]
N. Dubouis, A. Grimaud, Chem. Sci. 10(2019) 9165-9181. doi: 10.1039/C9SC03831K
-
[94]
J. Huang, Y. Jiang, T. An, M. Cao, J. Mater. Chem. A 8(2020) 25465-25498. doi: 10.1039/D0TA08802A
-
[95]
S. Sarkar, S.C. Peter, Inorg. Chem. Front. 5(2018) 2060-2080. doi: 10.1039/C8QI00042E
-
[96]
D. Deng, L. Yu, X. Pan, et al., Chem. Commun. 47(2011) 10016-10018. doi: 10.1039/c1cc13033a
-
[97]
D. Deng, K.S. Novoselov, Q. Fu, et al., Nat. Nanotechnol. 11(2016) 218-230. doi: 10.1038/nnano.2015.340
-
[98]
D. Raabe, M. Herbig, S. Sandlöbes, et al., Curr. Opin. Solid State Mater. Sci. 18(2014) 253-261. doi: 10.1016/j.cossms.2014.06.002
-
[99]
K.G. Pradeep, G. Herzer, P. Choi, D. Raabe, Acta Mater. 68(2014) 295-309. doi: 10.1016/j.actamat.2014.01.031
-
[100]
M. Herbig, D. Raabe, Y.J. Li, et al., Phys. Rev. Lett. 112(2014) 126103. doi: 10.1103/PhysRevLett.112.126103
-
[1]
-
-
-
[1]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[2]
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
-
[3]
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
-
[4]
Chunrui Zhao , Tianren Li , Jiage Li , Yansong Liu , Zian Fang , Xinyu Wang , Mingxin Huo , Shuangshi Dong , Mingyu Li . Doped cobalt for simultaneously promoting active (001) facet exposure of MIL-68(In) and acting as reactive sites in peroxymonosulfate-mediated photocatalytic decontamination. Chinese Chemical Letters, 2025, 36(5): 110201-. doi: 10.1016/j.cclet.2024.110201
-
[5]
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
-
[6]
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
-
[7]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[8]
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
-
[9]
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
-
[10]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[11]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[12]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[13]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[14]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[15]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[16]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[17]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[18]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[19]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[20]
Ningxiang Wu , Huaping Zhao , Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392
-
[1]
Metrics
- PDF Downloads(17)
- Abstract views(1365)
- HTML views(116)