Recent advances in tertiary amine Lewis base-promoted cycloadditions of allenoates
-
* Corresponding author.
E-mail address: lierqing@zzu.edu.cn(E.-Q. Li).
Citation:
Manman Song, Jing Zhao, Er-Qing Li. Recent advances in tertiary amine Lewis base-promoted cycloadditions of allenoates[J]. Chinese Chemical Letters,
;2022, 33(5): 2372-2382.
doi:
10.1016/j.cclet.2021.11.044
S. Kobayashi, K.A. Jørgensen, Cycloaddition Reactions in Organic Synthesis, Wiley, 2001.
M. Lautens, W. Klute, W. Tam, Chem. Rev. 96 (1996) 49-92.
doi: 10.1021/cr950016l
M.M. Rauhut, H. Currier, Chem. Abstr. 58 (1963) 66109.
A.B. Baylis, M.E.D. Hillman, Chem. Abstr. 77 (1972) 34174.
C. Zhang, X. Lu, J. Org. Chem. 60 (1995) 2906-2908.
doi: 10.1021/jo00114a048
C. Xie, A.J. Smaligo, X.R. Song, O. Kwon, ACS Cent. Sci. 7 (2021) 536-558.
doi: 10.1021/acscentsci.0c01493
P. Xie, Y. Huang, Eur. J. Org. Chem. (2013) 6213-6226.
E.Q. Li, Y. Huang, Chem. Commun. 56 (2020) 680-694.
doi: 10.1039/C9CC08241G
H. Guo, Y. Fan, Z. Sun, Y. Wu, O. Kwon, Chem. Rev. 118 (2018) 10049-10293.
doi: 10.1021/acs.chemrev.8b00081
Y. Wei, M. Shi, Chem. Asian J. 9 (2014) 2720-2734.
doi: 10.1002/asia.201402109
L.W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 37 (2008) 1140-1152.
doi: 10.1039/b717758e
X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 34 (2001) 535-544.
doi: 10.1021/ar000253x
L. Dai, S. Ye, Chin. Chem. Lett. 32 (2021) 660-667.
doi: 10.1016/j.cclet.2020.08.027
D.M. Flanigan, F. Romanov-Michailidis, N.A. White, T. Rovis, Chem. Rev. 115 (2015) 9307-9387.
doi: 10.1021/acs.chemrev.5b00060
M.N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 510 (2014) 485-496.
doi: 10.1038/nature13384
D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 107 (2007) 5606-5655.
doi: 10.1021/cr068372z
Q. Deng, F. Mu, Y. Qiao, D. Wei, Org. Biomol. Chem. 18 (2020) 6781-6800.
doi: 10.1039/D0OB01378A
S. Tsuboi, S. Takatsuka, M. Utaka, Chem. Lett. 17 (1988) 2003-2004.
doi: 10.1246/cl.1988.2003
Y.L. Shi, M. Shi, Org. Lett. 7 (2005) 3057-3060.
doi: 10.1021/ol051044l
G.L. Zhao, Y.L. Shi, M. Shi, Org. Lett. 7 (2005) 4527-4530.
doi: 10.1021/ol051920v
X.Y. Chen, M.W. Wen, S. Ye, Z.X. Wang, Org. Lett. 13 (2011) 1138-1141.
doi: 10.1021/ol103165y
X.C. Zhang, S.H. Cao, Y. Wei, M. Shi, Org. Lett. 13 (2011) 1142-1145.
doi: 10.1021/ol1031798
Y. Wang, Z.H. Yu, H.F. Zheng, D.Q. Shi, Org. Biomol. Chem. 10 (2012) 7739-7746.
doi: 10.1039/c2ob26300a
X.S. Meng, S. Jiang, X.Y. Xu, et al., RSC Adv. 6 (2016) 66630-66633.
doi: 10.1039/C6RA15117E
J. Mu, X. Xie, S. Xiong, et al., Chin. Chem. Lett. 32 (2021) 1897-1901.
doi: 10.1016/j.cclet.2021.01.033
K.K. Wang, W. Du, J. Zhu, Y.C. Chen, Chin. Chem. Lett. 32 (2021) 512-516.
J.W.H. Li, J.C. Vederas, Science 32 (2009) 161-165.
A.L. Harvey, Drug Discovery Today 13 (2008) 894-901.
doi: 10.1016/j.drudis.2008.07.004
Y. Liu, Y. Du, A. Yu, H. Mu, X. Meng, Org. Biomol. Chem. 14 (2016) 1226-1230.
doi: 10.1039/C5OB02383A
Y. Liu, Y. Du, A. Yu, D. Qin, X. Meng, Tetrahedron 71 (2015) 7706-7716.
doi: 10.1016/j.tet.2015.07.057
A.L.S. Kumari, K.C.K. Swamy, J. Org. Chem. 80 (2015) 4084-4096.
doi: 10.1021/acs.joc.5b00415
H. Jin, E. Li, Y. Huang, Org. Chem. Front. 4 (2017) 2216-2220.
doi: 10.1039/C7QO00596B
Q. Liu, S.J. Li, X. Li, L.B. Qu, D. Wei, ChemistrySelect 3 (2018) 10553-10558.
doi: 10.1002/slct.201802267
Y. Xiao, X.Y. Zhang, J.M. Zhao, Y. Qiao, J. Phys. Org. Chem. 32 (2019) 3914.
doi: 10.1002/poc.3914
Y. Wang, M. Song, E.Q. Li, Z. Duan, Org. Chem. Front. 8 (2021) 3366-3371.
doi: 10.1039/D1QO00330E
K. Li, Z. Gan, E.Q. Li, Z. Duan, Org. Lett. 23 (2021) 3094-3099.
doi: 10.1021/acs.orglett.1c00780
Y. Wang, S. Jia, E.Q. Li, Z. Duan J. Org. Chem. 84 (2019) 15323-15330.
doi: 10.1021/acs.joc.9b02349
Q.Z. Xi, Z.J. Gan, E.Q. Li, Z. Duan, Eur. J. Org. Chem. (2018) 4917-4925.
J. Jia, A. Yu, X. Liu, X. Meng, Chin. J. Org. Chem. 39 (2019) 2175-2182.
doi: 10.6023/cjoc201904082
J. Feng, Y. Chen, W. Qin, Y. Huang, Org. Lett. 22 (2020) 433-437.
doi: 10.1021/acs.orglett.9b04176
J. Feng, Y. Huang, ACS Catal. 10 (2020) 3541-3547.
doi: 10.1021/acscatal.0c00588
X. Meng, Y. Huang, H. Zhao, et al., Org. Lett. 11 (2009) 991-994.
doi: 10.1021/ol802917d
Y. Gu, F. Li, P. Hu, D. Liao, X. Tong, Org. Lett. 17 (2015) 1106-1109.
doi: 10.1021/acs.orglett.5b00359
S.K. Arupula, A.A. Qureshi, K.C.K. Swamy, J. Org. Chem. 85 (2020) 4130-4144.
doi: 10.1021/acs.joc.9b03281
A.S. Kumar, S. Chauhan, K.C.K. Swamy, Org. Lett. 23 (2021) 1123-1129.
doi: 10.1021/acs.orglett.1c00076
X.L. Huang, L. He, P.L. Shao, S. Ye, Angew. Chem. Int. Ed. 48 (2009) 192-195.
doi: 10.1002/anie.200804487
A. Chan, K. Scheidt, J. Am. Chem. Soc. 130 (2008) 2740-2741.
doi: 10.1021/ja711130p
Q. Zhang, L.G. Meng, J. Zhang, L. Wang, Org. Lett. 17 (2015) 3272-3275.
doi: 10.1021/acs.orglett.5b01237
M. Chang, C. Wu, J. Zheng, Y. Huang, Chem. Asian J. 11 (2016) 1512-1517.
doi: 10.1002/asia.201600102
C. Cheng, X. Sun, Z. Wu, et al., Org. Biomol. Chem. 17 (2019) 3232-3238.
doi: 10.1039/C9OB00179D
W. Luo, B. Shao, J. Li, et al., Tetrahedron Lett. 60 (2019) 151206.
doi: 10.1016/j.tetlet.2019.151206
G.L. Zhao, J.W. Huang, M. Shi, Org. Lett. 5 (2003) 4737-4739.
doi: 10.1021/ol0359416
T. Wang, X.Y. Chen, S. Ye, Tetrahedron Lett. 52 (2011) 5488-5490.
doi: 10.1016/j.tetlet.2011.08.057
P. Selig, A. Turočkina, W. Raven, Chem. Commun. 49 (2013) 2930-2932.
doi: 10.1039/c3cc40855h
M. Rommel, T. Fukuzumi, J.W. Bode, J. Am. Chem. Soc. 130 (2008) 17266-17267.
doi: 10.1021/ja807937m
X.F. Xiong, H. Zhang, J. Peng, Y.C. Chen, Chem. Eur. J. 17 (2011) 2358-2360.
doi: 10.1002/chem.201002592
X.Y. Chen, R.C. Lin, S. Ye, Chem. Commun. 48 (2012) 1317-1319.
doi: 10.1039/C2CC16055B
S. Xu, J. Chen, J. Shang, et al., Tetrahedron Lett. 56 (2015) 6456-6459.
doi: 10.1016/j.tetlet.2015.09.151
G. Rainoldi, M. Faltracco, L.L. Presti, A. Silvani, G. Lesma, Chem. Commun. 52 (2016) 11575-11578.
doi: 10.1039/C6CC05838H
T. Liu, C. He, F. Wang, et al., Synthesis 53 (2021) 518-526.
doi: 10.1055/s-0040-1707292
X.F. Zhu, J. Lan, O. Kwon, J. Am. Chem. Soc. 125 (2003) 4716-4717.
doi: 10.1021/ja0344009
C. Li, Q. Zhang, X. Tong, Chem. Commun. 46 (2010) 7828-7830.
doi: 10.1039/c0cc01966f
D. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 119 (2019) 8701-8780.
doi: 10.1021/acs.chemrev.9b00111
Q. Deng, X. Meng, Chem. Asian J. 15 (2020) 2838-2853.
doi: 10.1002/asia.202000550
K. Li, J. Hu, H. Liu, X. Tong, Chem. Commun. 48 (2012) 2900-2902.
doi: 10.1039/c2cc30242j
Y. Choe, P.H. Lee, Org. Lett. 11 (2009) 1445-1448.
doi: 10.1021/ol9001703
C. Ni, Y. Zhang, Y. Hou, X. Tong, Chem. Commun. 53 (2017) 2567-2570.
doi: 10.1039/C6CC09788J
M. Li, Z.M. Zhou, L.R. Wen, Z.X. Qiu, J. Org. Chem. 76 (2011) 3054-3063.
doi: 10.1021/jo102167g
Y. Liu, Q. Zhang, Y. Du, et al., RSC Adv. 4 (2014) 52629-52632.
doi: 10.1039/C4RA09249J
Y.T. Tian, F.G. Zhang, J.A. Ma, Tetrahedron 81 (2021) 131922.
doi: 10.1016/j.tet.2021.131922
W. Sun, F. Jiang, H. Liu, et al., Chin. Chem. Lett. 30 (2019) 363-366.
doi: 10.1016/j.cclet.2018.04.024
X. Shang, K. Liu, Z. Zhang, et al., Org. Biomol. Chem. 16 (2018) 895-898.
doi: 10.1039/C7OB03040A
Y. Zhu, Y. Huang, Org. Lett. 22 (2020) 6750-6755.
doi: 10.1021/acs.orglett.0c02164
Z.B. Zhang, Y. Yang, Z.X. Yu, J.B. Xia, ACS Catal. 10 (2020) 5419-5429.
doi: 10.1021/acscatal.0c01000
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Yu-Yao Li , Xiao-Hui Li , Zhi-Xuan An , Yang Chu , Xiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Pengfei Li , Chulin Qu , Fan Wu , Hu Gao , Chengyan Zhao , Yue Zhao , Zhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865