Citation: Naichen Zhang, Yuanzhi Ye, Lu Bai, Jingjing Liu, Han Wang, Xinjun Luan. Transition metal-free dearomatization of halonaphthols with C(sp3)-electrophiles[J]. Chinese Chemical Letters, ;2022, 33(5): 2411-2414. doi: 10.1016/j.cclet.2021.10.037 shu

Transition metal-free dearomatization of halonaphthols with C(sp3)-electrophiles

    * Corresponding author.
    E-mail addresses: hanwang@nwu.edu.cn (H. Wang), xluan@nwu.edu.cn (X. Luan).
    1 These authors contributed equally to this work.
  • Received Date: 10 September 2021
    Revised Date: 11 October 2021
    Accepted Date: 15 October 2021
    Available Online: 22 October 2021

Figures(7)

  • The first intermolecular electrophilic dearomatization of halonaphthols with benzyl/allyl bromides is described. Halonaphthols are used as carbon-nucleophiles in dearomatization to form three-dimensional cyclic enones with excellent chemoselectivity, in which etherification of phenolic hydroxyl group could be restrained well by using cesium carbonate as the base. A wide range of cyclic enones is directly prepared from various substituted benzyl/allyl bromides and halonaphthols. Mechanistic investigations suggest a direct SN2 reaction pathway.
  • 加载中
    1. [1]

      S.P. Roche, J.A. Porco, Angew. Chem. Int. Ed. 50(2011) 4068-4093.  doi: 10.1002/anie.201006017

    2. [2]

      C.X. Zhuo, W. Zhang, S.L. You, Angew. Chem. Int. Ed. 51(2012) 12662-12686.  doi: 10.1002/anie.201204822

    3. [3]

      W.T. Wu, L. Zhang, S.L. You, Chem. Soc. Rev. 45(2016) 1570-1580.  doi: 10.1039/C5CS00356C

    4. [4]

      R.X. Liang, L.J. Song, J.B. Lu, et al., Angew. Chem. Int. Ed. 60(2021) 7412-7417.  doi: 10.1002/anie.202014796

    5. [5]

      F.T. Sheng, J.Y. Wang, W. Tan, Y.C. Zhang, F. Shi, Org. Chem. Front. 7(2020) 3967-3998.  doi: 10.1039/D0QO01124J

    6. [6]

      S. Dong, J. Zhu, J.A. Porco, J. Am. Chem. Soc. 130(2008) 2738-2739.  doi: 10.1021/ja711018z

    7. [7]

      A. Rudolph, P.H. Bos, A. Meetsma, A.J. Minnaard, B.L. Feringa, Angew. Chem. Int. Ed. 50(2011) 5834-5838.  doi: 10.1002/anie.201102069

    8. [8]

      T. Oguma, T. Katsuki, J. Am. Chem. Soc. 134(2012) 20017-20020.  doi: 10.1021/ja310203c

    9. [9]

      T. Dohi, N. Takenaga, T. Nakae, et al., J. Am. Chem. Soc. 135(2013) 4558-4566.  doi: 10.1021/ja401074u

    10. [10]

      S. Quideau, Modern Arene Chemistry, Wiley-VCH, Weinheim, 2002.

    11. [11]

      S.K. Jackson, K.L. Wu, R.R. Pettus, Biomimetic Organic Synthesis, Wiley-VCH, Weinheim, 2011.

    12. [12]

      T. Nemoto, Y. Ishige, M. Yoshida, et al., Org. Lett. 12(2010) 5020-5023.  doi: 10.1021/ol102190s

    13. [13]

      Q.F. Wu, W.B. Liu, C.X. Zhuo, et al., Angew. Chem. Int. Ed. 50(2011) 4455-4458.  doi: 10.1002/anie.201100206

    14. [14]

      C.X. Zhuo, S.L. You, Angew. Chem. Int. Ed. 52(2013) 10056-10059.  doi: 10.1002/anie.201304591

    15. [15]

      L. Shao, X. Hu, Chem. Commun. 53(2017) 8192-8195.  doi: 10.1039/C7CC03034G

    16. [16]

      Q. Guo, M. Wang, H. Liu, R. Wang, Z. Xu, Angew. Chem. Int. Ed. 57(2018) 4747-4751.  doi: 10.1002/anie.201800767

    17. [17]

      H.J. Zhang, Q. Gu, S.L. You, Org. Lett. 22(2020) 3297-3301.  doi: 10.1021/acs.orglett.0c01109

    18. [18]

      S. Rousseaux, J. García-Fortanet, M.A.D.A. Sanchez, S.L. Buchwald, J. Am. Chem. Soc. 133(2011) 9282-9285.  doi: 10.1021/ja203644q

    19. [19]

      R.Q. Xu, Q. Gu, W.T. Wu, Z.A. Zhao, S.L. You, J. Am. Chem. Soc. 136(2014) 15469-15472.  doi: 10.1021/ja508645j

    20. [20]

      K. Du, P. Guo, Y. Chen, et al., Angew. Chem. Int. Ed. 54(2015) 3033-3037.  doi: 10.1002/anie.201411817

    21. [21]

      R.Q. Xu, P. Yang, C. Zheng, S.L. You, Chin. J. Chem. 38(2020) 683-689.  doi: 10.1002/cjoc.202000109

    22. [22]

      X. Mu, H. Yu, H. Peng, et al., Angew. Chem. Int. Ed. 59(2020) 8143-8147.  doi: 10.1002/anie.202000953

    23. [23]

      J. Nan, Z. Zuo, L. Luo, et al., J. Am. Chem. Soc. 135(2013) 17306-17309.  doi: 10.1021/ja410060e

    24. [24]

      L. Yang, H. Zheng, L. Luo, et al., J. Am. Chem. Soc. 137(2015) 4876-4879.  doi: 10.1021/jacs.5b01285

    25. [25]

      D. Yang, L. Wang, M. Kai, et al., Angew. Chem. Int. Ed. 54(2015) 9523-9527.  doi: 10.1002/anie.201503056

    26. [26]

      R.J. Phipps, F.D. Toste, J. Am. Chem. Soc. 135(2013) 1268-1271.  doi: 10.1021/ja311798q

    27. [27]

      Q. Yin, S.G. Wang, X.W. Liang, et al., Chem. Sci. 6(2015) 4179-4183.  doi: 10.1039/C5SC00494B

    28. [28]

      P. Wang, J. Wang, L. Wang, et al., Adv. Synth. Cata. 360(2018) 401-405.  doi: 10.1002/adsc.201700745

    29. [29]

      H. Egami, R. Rouno, T. Niwa, et al., Angew. Chem. Int. Ed. 59(2020) 14101-14105.  doi: 10.1002/anie.202005367

    30. [30]

      S.G. Wang, Q. Yin, C.X. Zhuo, S.L. You, Angew. Chem. Int. Ed. 54(2015) 647-650.

    31. [31]

      J. Nan, J. Liu, H. Zheng, et al., Angew. Chem. Int. Ed. 54(2015) 2356-2360.  doi: 10.1002/anie.201409565

    32. [32]

      L. Bai, J. Liu, W. Hu, et al., Angew. Chem. Int. Ed. 57(2018) 5151-5155.  doi: 10.1002/anie.201801894

    33. [33]

      X. Ma, J.J. Farndon, T.A. Young, N. Fey, J.F. Bower, Angew. Chem. Int. Ed. 56(2017) 14531-14535.  doi: 10.1002/anie.201708176

    34. [34]

      Y. Zhang, Y. Liao, X. Liu, et al., Chem. Sci. 8(2017) 6645-6649.  doi: 10.1039/C7SC02809A

    35. [35]

      P. Zhang, M. Li, X.S. Xue, et al., J. Org. Chem. 81(2016) 7486-7509.  doi: 10.1021/acs.joc.6b01178

    36. [36]

      G.J. Fox, G. Hallas, J.D. Hepworth, K.N. Paskins, Org. Synth. 6(1988) 181-185.

    37. [37]

      J.M. Brittain, P.B.D. de Ia Mare, P.A. Newman, J. Chem. Soc. Perkin Trans. 2(1981) 32-41.

    38. [38]

      D.J. Calvert, P.B.D. de la Mare, H. Suzuki, J. Chem. Soc. Perkin Trans. 2(1983) 255-260.

    39. [39]

      S. Stavber, M. Zupan, J. Org. Chem. 50(1985) 3609-3612.  doi: 10.1021/jo00219a032

    40. [40]

      W.R. Roush, R.J. Neitz, J. Org. Chem. 69(2004) 4906-4912.  doi: 10.1021/jo049426c

    41. [41]

      O.A. Attanasi, S. Berretta, C. Favi, et al., Org. Lett. 8(2006) 4291-4293.  doi: 10.1021/ol061637b

    42. [42]

      M.P. Hartshorn, H.T. Ing, K.E. Richards, K.H. Sutton, J. Vaughan, Aust. J. Chem. 35(1982) 1635-1644.  doi: 10.1071/CH9821635

    43. [43]

      R.R. Soelch, G.W. Mauer, D.M. Lemal, J. Org. Chem. 50(1985) 5845-5852.  doi: 10.1021/jo00350a079

    44. [44]

      R.G. Clewley, G.G. Cross, A. Fischer, G.N. Henderson, Tetrahedron 45(1989) 1299-1310.  doi: 10.1016/0040-4020(89)80128-0

    45. [45]

      I. Izzo, M. Scioscia, P.D. Gaudio, F.D. Riccardis, Tetrahedron Lett. 42(2001) 5421-5424.  doi: 10.1016/S0040-4039(01)01048-6

    46. [46]

      X. Song, A. Song, F. Zhang, H.X. Li, W. Wang, Nat. Commun. 2(2011) 524.  doi: 10.1038/ncomms1541

    47. [47]

      X. Song, F. Song, X. Meng, P. Ji, W. Wang, Green Synth, Catal. 2(2021) 377-380.

    48. [48]

      L. Wang, D. Yang, D. Li, et al., Chem. Eur. J. 22(2016) 8483-8487.  doi: 10.1002/chem.201601399

    49. [49]

      Q. Yin, S.G. Wang, X.W. Liang, et al., Chem. Sci. 6(2015) 4179-4183.  doi: 10.1039/C5SC00494B

    50. [50]

      P. Wang, J. Wang, L. Wang, et al., Adv. Synth. Catal. 360(2018) 401-405.  doi: 10.1002/adsc.201700745

  • 加载中
    1. [1]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

    2. [2]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    3. [3]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    4. [4]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    5. [5]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    6. [6]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

Metrics
  • PDF Downloads(10)
  • Abstract views(1113)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return