Graphene aerogel supported Pt-Ni alloy as efficient electrocatalysts for alcohol fuel oxidation
-
* Corresponding authors.
E-mail address: ligang.feng@yzu.edu.cn (L. Feng).
Citation:
Xiang Ding, Meng Li, Junling Jin, Xiaobing Huang, Xiang Wu, Ligang Feng. Graphene aerogel supported Pt-Ni alloy as efficient electrocatalysts for alcohol fuel oxidation[J]. Chinese Chemical Letters,
;2022, 33(5): 2687-2691.
doi:
10.1016/j.cclet.2021.09.076
X. Zhao, H. Zhao, J. Sun, G. Li, R. Liu, Chin. Chem. Lett. 31 (2020) 1782-1786
doi: 10.1016/j.cclet.2020.01.005
B. Fang, Z. Liu, Y. Bao, L. Feng, Chin. Chem. Lett. 31 (2020) 2259-2262
doi: 10.1016/j.cclet.2020.02.045
W. Guo, X. Yao, L. Peng, et al., Chin. Chem. Lett. 31 (2020) 836-840
doi: 10.1016/j.cclet.2019.06.018
T. Radhakrishnan, N. Sandhyarani, Electrochim. Acta 298 (2019) 835-843
doi: 10.1016/j.electacta.2018.12.151
Y. Zhou, D. Liu, W. Qiao, et al., Mater. Today Phys. 17 (2021) 100357
doi: 10.1016/j.mtphys.2021.100357
L. Tao, S. Dou, Z. Ma, S. Wang, Electrochim. Acta 157 (2015) 46-53
doi: 10.1016/j.electacta.2015.01.054
X. Yang, J. Xue, L. Feng, Chem. Commun. 55 (2019) 11247-11250
doi: 10.1039/c9cc06004a
J. Zhang, S. Lu, Y. Xiang, S.P. Jiang, ChemSusChem 13 (2020) 2484-2502
doi: 10.1002/cssc.202000048
N. Bhuvanendran, S. Ravichandran, W. Zhang, et al., Int. J. Hydrog. Energy 45 (2020) 6447-6460
doi: 10.1016/j.ijhydene.2019.12.176
W. Gong, Z. Jiang, R. Wu, et al., Appl. Catal. B Environ. 246 (2019) 277-283
doi: 10.1016/j.apcatb.2019.01.061
Q. Wang, S. Chen, H. Lan, et al., J. Mater. Chem. A 7 (2019) 18143-18149
doi: 10.1039/c9ta04412d
Y. Zhou, D. Liu, Z. Liu, L. Feng, J. Yang, ACS Appl. Mater. Interfaces 12 (2020) 47065-47075
doi: 10.1021/acsami.0c15074
J. Li, S. You, M. Liu, et al., Appl. Catal. B Environ. 265 (2020) 118574
doi: 10.1016/j.apcatb.2019.118574
Y. Bao, M. Zha, P. Sun, G. Hu, L. Feng, J. Energy Chem. 59 (2021) 748-754
doi: 10.1016/j.jechem.2020.12.007
H. Liu, D. Yang, Y. Bao, X. Yu, L. Feng, J. Power Sources 434 (2019) 226754
doi: 10.1016/j.jpowsour.2019.226754
N. Cheng, L. Zhang, H. Jiang, et al., Nanoscale 11 (2019) 16945-16953
doi: 10.1039/c9nr04053f
W.S. Jung, J. Energy Chem. 27 (2018) 326-334
doi: 10.1016/j.jechem.2017.05.012
X.L. Sui, L.M. Zhang, L. Zhao, et al., Int. J. Hydrog. Energy 43 (2018) 21899-21907
doi: 10.1016/j.ijhydene.2018.09.223
Y. Bao, L. Feng, Acta Phys. Chim. Sin. 37 (2021) 2008031
T. Schiros, D. Nordlund, L. Pálová, et al., Nano Lett. 12 (2012) 4025-4031
doi: 10.1021/nl301409h
Y. Zhang, F. Gao, P. Song, et al., ACS Sustain. Chem. Eng. 7 (2019) 3176-3184
doi: 10.1021/acssuschemeng.8b05020
X. Zhu, Z. Hu, M. Huang, et al., Chin. Chem. Lett. 32 (2021) 2033-2037
doi: 10.1016/j.cclet.2020.11.071
Y. Xin, J.G. Liu, X. Jie, et al., Electrochim. Acta 60 (2012) 354-358
doi: 10.1016/j.electacta.2011.11.062
B. Xiong, Y. Zhou, R. O'Hayre, Z. Shao, Appl. Surf. Sci. 266 (2013) 433-439
doi: 10.1016/j.apsusc.2012.12.053
N.N. Kariuki, W.J. Khudhayer, T. Karabacak, D.J. Myers, ACS Catal. 3 (2013) 3123-3132
doi: 10.1021/cs400759u
R. Lin, X. Cai, Z. Hao, H. Pu, H. Yan, Electrochim. Acta 283 (2018) 764-771
doi: 10.1016/j.electacta.2018.03.190
M. Li, Y. Gu, Y. Chang, et al., Chem. Eng. J. 425 (2021) 130686
doi: 10.1016/j.cej.2021.130686
C. Pei, R. Ding, X. Yu, L. Feng, ChemCatChem 11 (2019) 4617-4623
doi: 10.1002/cctc.201900886
H. Liu, D.W. Yang, Y.F. Bao, X. Yu, L.G. Feng, J. Power Sources 434 (2019) 226754
doi: 10.1016/j.jpowsour.2019.226754
X. Teng, A. Shan, Y. Zhu, R. Wang, W.M. Lau, Electrochim. Acta 353 (2020) 136542
doi: 10.1016/j.electacta.2020.136542
Q. Lv, X. Ren, L. Liu, W. Guan, A. Liu, Ionics 26 (2020) 1325-1336
doi: 10.1007/s11581-019-03280-2
K. Jiang, H.X. Zhang, S.Z. Zou, W.B. Cai, Phys. Chem. Chem. Phys. 16 (2014) 20360-20376
doi: 10.1039/C4CP03151B
T.C. Deivaraj, W. Chen, J.Y. Lee, J. Mater. Chem. 13 (2003) 2555-2560
doi: 10.1039/b307040a
W. Chen, J. Xue, Y. Bao, L. Feng, Chem. Eng. J. 381 (2020) 122752
doi: 10.1016/j.cej.2019.122752
Y. Bao, H. Liu, Z. Liu, F. Wang, L. Feng, Appl. Catal. B Environ. 274 (2020) 119106
doi: 10.1016/j.apcatb.2020.119106
L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Carbon 48 (2010) 781-787
doi: 10.1016/j.carbon.2009.10.027
H. Huang, J. Zhu, D. Li, et al., J. Mater. Chem. A 5 (2017) 4560-4567
doi: 10.1039/C6TA10548C
X. Yuan, Y. Min, J. Wu, L. Xu, W. Yue, Electrochim. Acta (2021) 139106
G. Li, L. Feng, J. Chang, et al., ChemSusChem 7 (2014) 3374-3381
doi: 10.1002/cssc.201402705
J. Flórez-Montaño, G. García, O. Guillén-Villafuerte, et al., Electrochim. Acta 209 (2016) 121-131
doi: 10.1016/j.electacta.2016.05.070
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Ping Liu , Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Sushu Zhang , Yang Yang , Jingyu Wang . Pyridinic nitrogen-substituted graphene membranes for exceptional CO2 capture. Chinese Journal of Structural Chemistry, 2025, 44(2): 100440-100440. doi: 10.1016/j.cjsc.2024.100440
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235