Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production
-
* Corresponding authors.
E-mail addresses: wguo@hust.edu.cn (W. Guo), byxia@hust.edu.cn (B.Y. Xia).
Citation:
Hong Chen, Yansong Zhou, Wei Guo, Bao Yu Xia. Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production[J]. Chinese Chemical Letters,
;2022, 33(4): 1831-1840.
doi:
10.1016/j.cclet.2021.09.034
Q. Xu, J. Zhang, D. Wang, Y. Li, Chin. Chem. Lett. 32 (2021) 3771–3781.
doi: 10.1016/j.cclet.2021.05.032
Y. Wang, Y. Zhao, X. Ding, L. Qiao, J. Energy Chem. 60 (2021) 451–479
doi: 10.3390/healthcare9040451
J. Chi, H. Yu, Chin. J. Catal. 39 (2018) 390–394
doi: 10.1016/S1872-2067(17)62949-8
L. Zhang, L. Zhuang, H. Liu, et al., Small Sci. 1 (2021) 2000027
doi: 10.1002/smsc.202000027
S. Li, J. Sun, J. Guan, Chin. J. Catal. 42 (2021) 511–556
doi: 10.1016/S1872-2067(20)63693-2
M. Grätzel, Nature 414 (2001) 338–344
doi: 10.1038/35104607
L. Zhang, H. Zhao, S. Xu, et al., Small Struct. 2 (2021) 2000048
doi: 10.1002/sstr.202000048
C.T. Hsieh, X.F. Chuah, C.L. Huang, et al., Small Method. 3 (2019) 1900234
doi: 10.1002/smtd.201900234
C. Chen, L. Wang, B. Zhu, et al., J. Energy Chem. 54 (2021) 528–554
doi: 10.1016/j.jechem.2020.05.068
Y. Zhang, K. Ren, L. Wang, L. Wang, Z. Fan, Chin. Chem. Lett. 33 (2022) 33–60.
doi: 10.6023/cjoc202107066
H.C. Zeng, ChemCatChem 12 (2020) 5303–5311
doi: 10.1002/cctc.202001003
V. Polshettiwar, R. Luque, A. Fihri, et al., Chem. Rev. 111 (2011) 3036–3075
doi: 10.1021/cr100230z
Y. Gong, X. Xing, Y. Wang, et al., Small Sci. (2021) 2100006
doi: 10.1002/smsc.202100006
H.B. Aiyappa, J. Masa, C. Andronescu, et al., Small Method. 3 (2019) 1800415
doi: 10.1002/smtd.201800415
X. Liu, T. Yue, K. Qi, et al., Chin. Chem. Lett. 31 (2020) 2189–2201
doi: 10.1002/mma.6033
W. Liu, H. Zhang, C. Li, et al., J. Energy Chem. 47 (2020) 333–345
doi: 10.2147/nss.s248643
P. Prabhu, J.M. Lee, Chem. Soc. Rev. 50 (2021) 6700–6719
doi: 10.1039/d0cs01041c
Y. Zheng, Y. Jiao, L.H. Li, et al., ACS Nano 8 (2014) 5290–5296
doi: 10.1021/nn501434a
D. Liu, J. Wang, J. Lu, et al., Small Method. 3 (2019) 1900083
doi: 10.1002/smtd.201900083
D. Voiry, J. Yang, M. Chhowalla, Adv. Mater. 28 (2016) 6197–6206
doi: 10.1002/adma.201505597
Y. He, P. Tang, Z. Hu, et al., Nat. Commun. 11 (2020) 57
doi: 10.1038/s41467-019-13631-2
S. Intikhab, V. Natu, J. Li, et al., J. Catal. 371 (2019) 325–332
doi: 10.1016/j.jcat.2019.01.037
W. Fang, L. Huang, S. Zaman, et al., Chem. Res. Chin. Univ. 36 (2020) 611–621
doi: 10.1007/s40242-020-0182-3
A.J. Bard, Nature 368 (1994) 597–598
doi: 10.1038/368597a0
C.G. Morales-Guio, L.A. Stern, X. Hu, Chem. Soc. Rev. 43 (2014) 6555–6569
doi: 10.1039/C3CS60468C
R. Subbaraman, D. Tripkovic, D. Strmcnik, et al., Science 334 (2011) 1256
doi: 10.1126/science.1211934
Q. Gao, W. Zhang, Z. Shi, L. Yang, Y. Tang, Adv. Mater. 31 (2019) 1802880
doi: 10.1002/adma.201802880
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017) eaad4998
doi: 10.1126/science.aad4998
B. Xiong, L. Chen, J. Shi, ACS Catal. 8 (2018) 3688–3707
doi: 10.1021/acscatal.7b04286
J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Chem. Rev. 120 (2020) 851–918
doi: 10.1021/acs.chemrev.9b00248
H. Vrubel, T. Moehl, M. Grätzel, X. Hu, Chem. Commun. 49 (2013) 8985–8987
doi: 10.1039/c3cc45416a
M. Zeng, Y. Li, J. Mater. Chem. A 3 (2015) 14942–14962
doi: 10.1039/C5TA02974K
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 29 (2017) 1605838
doi: 10.1002/adma.201605838
A. Ali, P.K. Shen, Carbon Energy 2 (2020) 99–121
doi: 10.1002/cey2.26
S.L. Cai, W.G. Zhang, R.N. Zuckermann, et al., Adv. Mater. 27 (2015) 5762–5770
doi: 10.1002/adma.201500124
F. Yang, S. Cheng, X. Zhang, et al., Adv. Mater. 30 (2018) 1702415
doi: 10.1002/adma.201702415
M.X. Wu, Y.W. Yang, Chin. Chem. Lett. 28 (2017) 1135–1143
doi: 10.1016/j.cclet.2017.03.026
T. Sick, A.G. Hufnagel, J. Kampmann, et al., J. Am. Chem. Soc. 140 (2018) 2085–2092
doi: 10.1021/jacs.7b06081
S.Y. Ding, J. Gao, Q. Wang, et al., J. Am. Chem. Soc. 133 (2011) 19816–19822
doi: 10.1021/ja206846p
H. Sahabudeen, H. Qi, B.A. Glatz, et al., Nat. Commun. 7 (2016) 13461
doi: 10.1038/ncomms13461
H. Huang, F. Li, Y. Zhang, Y. Chen, J. Mater. Chem. A 7 (2019) 5575–5582
doi: 10.1039/c9ta00040b
B. Ball, C. Chakravarty, P. Sarkar, J. Phys. Chem. Lett. 11 (2020) 1542–1549
doi: 10.1021/acs.jpclett.9b03876
S. Maiti, A.R. Chowdhury, A.K. Das, ChemNanoMat 6 (2020) 99–106
doi: 10.1002/cnma.201900499
C. Yang, S. Tao, N. Huang, et al., ACS Appl. Nano Mater. 3 (2020) 5481–5488
doi: 10.1021/acsanm.0c00786
D. Wu, Q. Xu, J. Qian, X. Li, Y. Sun, Chem. Eur. J. 25 (2019) 3105–3111
A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Adv. Mater. 31 (2019) 1900617
doi: 10.1002/adma.201900617
X. Zhang, J. Han, J. Guo and Z. Tang, Small Struct. 2 (2021) 2000141
doi: 10.1002/sstr.202000141
X. He, F. Yin, H. Wang, B. Chen, G. Li, Chin. J. Catal. 39 (2018) 207–227
doi: 10.1016/S1872-2067(18)63017-7
X. Li, Z. Wang and L. Wang, Small Sci. 1 (2021) 2000074
doi: 10.1002/smsc.202000074
T. Xia, Y. Lin, W. Li, M. Ju, Chin. Chem. Lett. 32 (2021) 2975–2984.
doi: 10.1016/j.cclet.2021.02.058
Y.P. Wu, W. Zhou, J. Zhao, et al., Angew. Chem. Int. Ed. 56 (2017) 13001–13005
doi: 10.1002/anie.201707238
L. Qi, Y.Q. Su, Z. Xu, et al., J. Mater. Chem. A 8 (2020) 22974–22982
doi: 10.1039/d0ta08094b
M. Zhao, W. Li, J. Li, W. Hu, C.M. Li, Adv. Sci. 7 (2020) 2001965
doi: 10.1002/advs.202001965
D. Zhu, J. Liu, Y. Zhao, Y. Zheng, S.Z. Qiao, Small 15 (2019) 1805511
doi: 10.1002/smll.201805511
M. Jahan, Z. Liu, K.P. Loh, Adv. Funct. Mater. 23 (2013) 5363–5372
doi: 10.1002/adfm.201300510
H. Huang, Y. Zhao, Y. Bai, et al., Adv. Sci. 7 (2020) 2000012
doi: 10.1002/advs.202000012
Y. Sun, Z. Xue, Q. Liu, et al., Nat. Commun. 12 (2021) 1369
doi: 10.1038/s41467-021-21595-5
R. Dong, Z. Zheng, D.C. Tranca, et al., Chem. Eur. J. 23 (2017) 2255–2260
doi: 10.1002/chem.201605337
Z. Chen, H. Qing, K. Zhou, D. Sun, R. Wu, Prog. Mater. Sci. 108 (2020) 100618
doi: 10.1016/j.pmatsci.2019.100618
M. Kuang, Q. Wang, P. Han, G. Zheng, Adv. Energy Mater. 7 (2017) 1700193
doi: 10.1002/aenm.201700193
G. Anandhababu, Y. Huang, D.D. Babu, M. Wu, Y. Wang, Adv. Funct. Mater. 28 (2018) 1706120
doi: 10.1002/adfm.201706120
S.M. Oh, S.B. Patil, X. Jin, S.J. Hwang, Chem. Eur. J. 24 (2018) 4757–4773
doi: 10.1002/chem.201704284
P. Karthick Kannan, P. Shankar, C. Blackman, C.H. Chung, Adv. Mater. 31 (2019) 1803432
doi: 10.1002/adma.201803432
Y. Chen, Z. Fan, Z. Zhang, et al., Chem. Rev. 118 (2018) 6409–6455
doi: 10.1021/acs.chemrev.7b00727
H. Liu, H. Tang, M. Fang, et al., Adv. Mater. 28 (2016) 8170–8176
doi: 10.1002/adma.201601180
R. Shen, J. Xie, Q. Xiang, et al., Chin. J. Catal. 40 (2019) 240–288
doi: 10.1016/S1872-2067(19)63294-8
X. Zeng, Y. Zhao, X. Hu, G.D. Stucky, M. Moskovits, Small Struct. 2 (2021) 2000138
doi: 10.1002/sstr.202000138
R. Gusmão, Z. Sofer, D. Bouša, M. Pumera, Angew. Chem. Int. Ed. 56 (2017) 14417–14422
doi: 10.1002/anie.201706389
C. Gibaja, M. Assebban, I. Torres, et al., J. Mater. Chem. A 7 (2019) 22475–22486
doi: 10.1039/c9ta06072c
C. Li, Y. Xu, S. Liu, et al., ACS Sustain. Chem. Eng. 7 (2019) 15747–15754
doi: 10.1021/acssuschemeng.9b03967
J. Fan, J. Wu, X. Cui, et al., J. Am. Chem. Soc. 142 (2020) 3645–3651
doi: 10.1021/jacs.0c00218
A. Mahmood, H. Lin, N. Xie, X. Wang, Chem. Mat. 29 (2017) 6329–6335
doi: 10.1021/acs.chemmater.7b01598
S.W. Jang, S. Dutta, A. Kumar, et al., ACS Nano 14 (2020) 10578–10588
doi: 10.1021/acsnano.0c04628
T.P. Yadav, C.F. Woellner, T. Sharifi, et al., ACS Nano 14 (2020) 7435–7443
doi: 10.1021/acsnano.0c03081
J.Q. Chi, M. Yang, Y.M. Chai, et al., J. Energy Chem. 48 (2020) 398–423
doi: 10.1016/j.jechem.2020.02.013
J. Wang, H. Zhang and X. Wang, Small Method. 1 (2017) 1700118
doi: 10.1002/smtd.201700118
K. Hu, T. Ohto, Y. Nagata, et al., Nat. Commun. 12 (2021) 203
doi: 10.1038/s41467-020-20503-7
X. Zheng, J. Xu, K. Yan, et al., Chem. Mat. 26 (2014) 2344–2353
doi: 10.1021/cm500347r
L. Li, D. Zhang, J. Deng, Y. Gou, J. Fang, J. Energy Chem. 49 (2020) 365–374
doi: 10.1016/j.jechem.2020.03.010
Y. Fujita, H.O. Venterink, P.M. Van Bodegom, et al., Nature 505 (2014) 82–86
doi: 10.1038/nature12733
J. Si, J. Yu, Y. Shen, M. Zeng, L. Fu, Small Struct. 2 (2021) 2000101
doi: 10.1002/sstr.202000101
X. Wang, L. Bai, J. Lu, et al., Angew. Chem. Int. Ed. 58 (2019) 19060–19066
doi: 10.1002/anie.201911696
Y. Li, W. Pei, J. He, et al., ACS Catal. 9 (2019) 10870–10875
doi: 10.1021/acscatal.9b03506
X. Li, L. Xiao, L. Zhou, et al., Angew. Chem. Int. Ed. 59 (2020) 21106–21113
doi: 10.1002/anie.202008514
R. He, J. Hua, A. Zhang, et al., Nano Lett. 17 (2017) 4311–4316
doi: 10.1021/acs.nanolett.7b01334
Y. Cai, J. Gao, S. Chen, et al., Chem. Mat. 31 (2019) 8948–8956
doi: 10.1021/acs.chemmater.9b03031
B. Zhao, Z. Wan, Y. Liu, et al., Nature 591 (2021) 385–390
doi: 10.1038/s41586-021-03338-0
C. Tan, X. Cao, X.J. Wu, et al., Chem. Rev. 117 (2017) 6225–6331
doi: 10.1021/acs.chemrev.6b00558
H. Tributsch, J.C. Bennett, J. Electronanal. Chem. 81 (1977) 97–111
doi: 10.1016/S0022-0728(77)80363-X
B. Hinnemann, P.G. Moses, J. Bonde, et al., J. Am. Chem. Soc. 127 (2005) 5308–5309
doi: 10.1021/ja0504690
J. Wei, G. Wang, Y. Zhang, et al., Chin. Chem. Lett. 32 (2021) 1191–1196
doi: 10.1016/j.cclet.2020.08.005
S. Hua, D. Qu, L. An, et al., Chin. J. Catal. 38 (2017)1028–1037
doi: 10.1016/S1872-2067(17)62830-4
K. Jiang, M. Luo, Z. Liu, et al., Nat. Commun. 12 (2021) 1687
doi: 10.1038/s41467-021-21956-0
H.I. Karunadasa, E. Montalvo, Y. Sun, et al., Science 335 (2012) 698
doi: 10.1126/science.1215868
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, et al., Science 317 (2007) 100
doi: 10.1126/science.1141483
J. Hu, C. Zhang, Y. Zhang, et al., Small 16 (2020) 2002212
doi: 10.1002/smll.202002212
D. Voiry, M. Salehi, R. Silva, et al., Nano Lett. 13 (2013) 6222–6227
doi: 10.1021/nl403661s
E.E. Benson, H. Zhang, S.A. Schuman, et al., J. Am. Chem. Soc. 140 (2018) 441–450
doi: 10.1021/jacs.7b11242
H. Wang, X. Xiao, S. Liu, et al., J. Am. Chem. Soc. 141 (2019) 18578–18584
doi: 10.1021/jacs.9b09932
J. Zhang, T. Wang, P. Liu, et al., Energy Environ. Sci. 9 (2016) 2789–2793
doi: 10.1039/C6EE01786J
O. Lehtinen, H.P. Komsa, A. Pulkin, et al., ACS Nano 9 (2015) 3274–3283
doi: 10.1021/acsnano.5b00410
S. Deng, F. Yang, Q. Zhang, et al., Adv. Mater. 30 (2018) 1802223
doi: 10.1002/adma.201802223
Z. Luo, J. Ge, C. Liu, W. Xing, J. Energy Chem. 41 (2020) 15–19
doi: 10.1016/j.jechem.2019.03.031
Z. Luo, H. Zhang, Y. Yang, et al., Nat. Commun. 11 (2020) 1116
doi: 10.1038/s41467-020-14980-z
H. Huang, J. Zha, S. Li, C. Tan, Chin. Chem. Lett. 33 (2022) 163–176.
doi: 10.1016/j.cclet.2021.06.004
Y. Zhang, D. Yao, B. Xia, et al., Small Sci. 1 (2021) 2000052
doi: 10.1002/smsc.202000052
X. Gao, B. Li, X. Sun, et al., Chin. Chem. Lett. 32 (2021) 3591–3595.
doi: 10.1016/j.cclet.2021.03.053
J. Azadmanjiri, P. Kumar, V.K. Srivastava, Z. Sofer, ACS Appl. Nano Mater. 3 (2020) 3116–3143
doi: 10.1021/acsanm.0c00120
Q. Tang, D.E. Jiang, ACS Catal. 6 (2016) 4953–4961
doi: 10.1021/acscatal.6b01211
X. Chen, Y. Qiu, G. Liu, et al., J. Mater. Chem. A 5 (2017) 11357–11363
doi: 10.1039/C7TA02327H
D. Gao, B. Xia, Y. Wang, et al., Small 14 (2018) 1704150
doi: 10.1002/smll.201704150
W. Cui, Z.Y. Hu, R.R. Unocic, G. Van Tendeloo, X. Sang, Chin. Chem. Lett. 32 (2021) 339–344
doi: 10.1016/j.cclet.2020.04.024
L. Huang, L. Ding, H. Wang, Small Sci. (2021) 2100013
doi: 10.1002/smsc.202100013
K. Li, S. Zhang, Y. Li, J. Fan, K. Lv, Chin. J. Catal. 42 (2021) 3–14
doi: 10.1016/S1872-2067(20)63630-0
H. Pan, Sci. Rep. 6 (2016) 32531
doi: 10.1038/srep32531
Y. Gao, H. Zhuo, Y. Cao, et al., Chin. J. Catal. 40 (2019) 152–159
doi: 10.1016/S1872-2067(18)63197-3
H. Lind, B. Wickman, J. Halim, et al., Adv. Sustain. Syst. 5 (2021) 2000158
doi: 10.1002/adsu.202000158
J. Zhang, Y. Zhao, X. Guo, et al., Nat. Catal. 1 (2018) 985–992
doi: 10.1038/s41929-018-0195-1
Y. Jiang, T. Sun, X. Xie, et al., ChemSusChem 12 (2019) 1368–1373
doi: 10.1002/cssc.201803032
A.D. Handoko, K.D. Fredrickson, B. Anasori, et al., ACS Appl. Energy Mater. 1 (2018) 173–180
doi: 10.1021/acsaem.7b00054
W. Xiao, D. Yan, Y. Zhang, X. Yang, T. Zhang, Energy Fuels 35 (2021) 4609–4615
doi: 10.1021/acs.energyfuels.1c00123
D. Geng, X. Zhao, Z. Chen, et al., Adv. Mater. 29 (2017) 1700072
doi: 10.1002/adma.201700072
Y. Liu, H. Xiao, W.A. Goddard, J. Am. Chem. Soc. 138 (2016) 15853–15856
doi: 10.1021/jacs.6b10834
C. Cui, R. Cheng, C. Zhang, X. Wang, Chin. Chem. Lett. 31 (2020) 988–991
doi: 10.1016/j.cclet.2019.08.026
A. Han, Z. Zhang, X. Li, et al., Small Method. 4 (2020) 2000248
doi: 10.1002/smtd.202000248
P.M. Bodhankar, P.B. Sarawade, G. Singh, A. Vinu, D.S. Dhawale, J. Mater. Chem. A 9 (2021) 3180–3208
doi: 10.1039/d0ta10712c
J. Yu, Q. Wang, D. O'Hare, L. Sun, Chem. Soc. Rev. 46 (2017) 5950–5974
doi: 10.1039/C7CS00318H
Z. Cao, B. Li, L. Sun, et al., Small Method. 4 (2020) 1900343
doi: 10.1002/smtd.201900343
Y. Zhai, X. Ren, J. Yan, et al., Small Struct. 2 (2021) 2000096
doi: 10.1002/sstr.202000096
H. Yang, Z. Chen, P. Guo, B. Fei, R. Wu, Appl. Catal. B Environ. 261 (2020) 118240
doi: 10.1016/j.apcatb.2019.118240
H. Yin, S. Zhao, K. Zhao, et al., Nat. Commun. 6 (2015) 6430
doi: 10.1038/ncomms7430
C. Xia, Y. Zhou, C. He, et al., Small Sci. 1 (2021) 2100010.
doi: 10.1002/smsc.202100010
L. Huang, S. Zaman, Z. Wang, et al., Acta Phys. Chim. Sin. 37 (2021) 2009035
Y. Yang, M. Wu, X. Zhu, et al., Chin. Chem. Lett. 30 (2019) 2065–2088
doi: 10.1016/j.cclet.2019.11.001
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686
Yanhui Lu , Chengang Pei , Wenqiang Li , Qing Liu , Huan Pang , Xu Yu . Tailoring active sites of cerium and nitrogen Co-doped rhenium disulfide for enhanced hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(12): 111646-. doi: 10.1016/j.cclet.2025.111646
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Xu He , Wenjie Gao , Jinglei Xu , Zhanjun Cheng , Wenchao Peng , Beibei Yan , Guanyi Chen , Ning Li . Machine learning-assisted construction of C=O and pyridinic N active sites in sludge-based catalysts. Chinese Chemical Letters, 2025, 36(12): 111019-. doi: 10.1016/j.cclet.2025.111019
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Chi Zhang , Zhilong Wang , Xinyue Wang , Yufei Zhang , Zhiguo Zhang , An Chen , Jinjin Li , Xitian Zhang , Lili Wu . Chip−like high−entropy oxide catalysts enhance fast sulfur evolution reaction for long−life lithium−sulfur batteries. Chinese Chemical Letters, 2025, 36(12): 110551-. doi: 10.1016/j.cclet.2024.110551
Bin Zhao , Heping Luo , Jiaqing Liu , Sha Chen , Han Xu , Yu Liao , Xue Feng Lu , Yan Qing , Yiqiang Wu . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919-. doi: 10.1016/j.cclet.2024.109919
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Xingyan Liu , Yue Li , Kaili Wu , Panpan Li , Yonggang Xu , Xiaowei Li , Junhao Zhou , Youzhou He , Min Fu , Guangming Jiang , Siping Wei . In-situ confined up-conversion Pt/CQDs within linker-defective NH2-MIL-125 to integrate photosensitivity and conductivity for hydrogen production and NO oxidation. Chinese Chemical Letters, 2025, 36(11): 110853-. doi: 10.1016/j.cclet.2025.110853
Dongying Fu , Lin Pan , Yanli Ma , Yue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Qiao Wang , Ziling Jiang , Chuang Yu , Liping Li , Guangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Yuhan Zheng , Yunzhen Jia , Xuelei Lang , Dazhong Zhong , Jinping Li , Qiang Zhao . Stabilizing Cu2+ in perovskite via A-site modulation for efficient CO2 electrocatalysis to CH4. Chinese Chemical Letters, 2025, 36(8): 111193-. doi: 10.1016/j.cclet.2025.111193
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221