Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries
* Corresponding author.
E-mail address: gq-zou@csu.edu.cn (G. Zou).
Citation:
Nkongolo Tshamala Aristote, Kangyu Zou, Andi Di, Wentao Deng, Baowei Wang, Xinglan Deng, Hongshuai Hou, Guoqiang Zou, Xiaobo Ji. Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries[J]. Chinese Chemical Letters,
;2022, 33(2): 730-742.
doi:
10.1016/j.cclet.2021.08.049
K. Feng, M. Li, W. Liu, et al., Nano Micro Small 14(2018) 1702737.
Y. Lu, L. Yu, X.W. Luo, Chem. 4(2018) 972-996.
doi: 10.1016/j.chempr.2018.01.003
W. Wang, B. Schwenzer, J. Xiao, et al., Nano Lett. 12(2012) 3783-3787.
doi: 10.1021/nl3016957
Z. Li, C. Bommier, Z.S. Chong, et al., Adv. Energy Mater. 7(2017) 1602894.
doi: 10.1002/aenm.201602894
W. Zhang, F. Zhang, F. Ming, H.N. Alshareef, Energy Chem. 1(2019) 100012.
doi: 10.1016/j.enchem.2019.100012
X. Pu, H. Wang, T. Yuan, et al., Energy Storage Mater. 22(2019) 330-336.
doi: 10.1016/j.ensm.2019.02.017
L. Wu, D. Bresser, D. Buchholz, S. Passerini, J. Electrochem. Soc. 162(2015) A3052-A3058.
doi: 10.1149/2.0091502jes
Y. Pan, X. Cheng, M. Gao, et al., ACS Appl. Mater. Interfaces 12(2020) 33621-33630.
doi: 10.1021/acsami.0c06296
M. Wahid, D. Puthusseri, Y. Gawli, N. Sharma, S. Ogale, ChemSusChem 11(2018) 506-526.
doi: 10.1002/cssc.201701664
Z. Li, Z. Jian, X. Wang, et al., Chem. Commun. 53(2017) 2610-2613.
doi: 10.1039/C7CC00301C
Y. Bai, Z. Wang, C. Wu, et al., ACS Appl. Mater. Interfaces 7(2015) 5598-5604.
doi: 10.1021/acsami.5b00861
F. Xie, Z. Xu, Z. Guo, M.M. Titirici, Progr. Energy 2(2020) 042002.
doi: 10.1088/2516-1083/aba5f5
J. Chen, Z. Xiao, J. Meng, et al., Sci. China Mater. 63(2020) 1163-1170.
doi: 10.1007/s40843-020-1274-0
Y.S. Xu, J.C. Gao, X.S. Tao, et al., ACS Appl. Mater. Interfaces 12(2020) 15313-15319.
doi: 10.1021/acsami.0c02157
Y. Zhang, L. Tao, C. Xie, et al., Adv. Mater. 32(2020) 1905923.
doi: 10.1002/adma.201905923
H. Su, S. Jaffer, H. Yu, Energy Storage Mater. 5(2016) 116-131.
doi: 10.1016/j.ensm.2016.06.005
P.F. Wang, Y. You, Y.X. Yin, Y.G. Guo, Adv. Energy Mater. 8(2017) 1701912.
T. Jin, Y. Liu, Y. Li, et al., Adv. Energy Mater. 7(2017) 1700087.
doi: 10.1002/aenm.201700087
N. Zhang, X. Xiao, H. Pang, Nanoscale Horiz. 4(2019) 99-116.
doi: 10.1039/C8NH00144H
C. Masquelier, L. Croguennec, Chem. Rev. 113(2013) 6552-6591.
doi: 10.1021/cr3001862
Z. Liu, A. Daali, G.L. Xu, et al., Nano Lett. 20(2020) 3844-3851.
doi: 10.1021/acs.nanolett.0c00964
W. Wang, S. Wang, H. Jiao, P. Zhan, S. Jiao, Phys. Chem. Chem. Phys. 17(2015) 4551-4557.
doi: 10.1039/C4CP05764C
Y. Pan, Y. Zhang, B.S. Parimalam, et al., J. Electroanal. Chem. 799(2017) 181-186.
doi: 10.1016/j.jelechem.2017.06.002
S.H. Kang, W.S. Yoon, K.W. Nam, X.Q. Yang, D.P. Abraham, Mater. Sci. 42(2008) 4701-4706.
J. Song, K. Wang, J. Zheng, et al., ACS Energy Lett. 5(2020) 1718-1725.
doi: 10.1021/acsenergylett.0c00700
Z.L. Xu, K. Lim, K.Y. Park, et al., Adv. Funct. Mater. 28(2018) 1802099.
doi: 10.1002/adfm.201802099
J. Fondard, E. Irisarri, C. Courreges, et al., Electrochem. Soc. 167(2020) 070526.
doi: 10.1149/1945-7111/ab75fd
R. Mogensen, D. Brandell, R. Younesi, ACS Energy Lett. 1(2016) 1173-1178.
doi: 10.1021/acsenergylett.6b00491
X. Li, X. Sun, X. Hu, et al., Nano Energy 77(2020) 105143.
doi: 10.1016/j.nanoen.2020.105143
B. Jache, P. Adelhelm, J. German Chem. Soc. 53(2014) 10169-10173.
S. Komaba, W. Murata, T. Ishikawa, et al., Adv. Funct. Mater. 21(2011) 3859-3867.
doi: 10.1002/adfm.201100854
I.E. Moctar, Q. Ni, Y. Bai, F. Wu, C. Wu, Funct. Mater. Lett. 11(2018) 1830003.
doi: 10.1142/S1793604718300037
M. Chen, Q. Liu, S.W. Wang, et al., Adv. Energy Mater. 9(2019) 1803609.
doi: 10.1002/aenm.201803609
C. Ding, T. Nohira, R. Hagiwara, Phys. Chem. Chem. Phys. 18(2016) 30770-30776.
doi: 10.1039/C6CP05944A
B. Zhang, C.M. Ghimbeu, C. Laberty, C.V. Guterl, J.M. Tarascon, Adv. Energy Mater. 6(2016) 1501588.
doi: 10.1002/aenm.201501588
T. Chen, L. Pan, T. Lu, et al., J. Mater. Chem. A 2(2014) 1263-1267.
doi: 10.1039/C3TA14037G
Y. Li, S. Xu, X. Wu, et al., J. Mater. Chem. A 3(2015) 71-77.
doi: 10.1039/C4TA05451B
M. Zhang, Y. Li, F. Wu, Y. Bai, C. Wu, Nano Energy 82(2021) 105738.
doi: 10.1016/j.nanoen.2020.105738
Y Liu, B.V. Merinov, W.A. Goddard, PNAS 113(2016) 3735-3739.
doi: 10.1073/pnas.1602473113
C.M. Ghimbeu, J. Gorka, V. Simone, et al., Nano Energy 44(2018) 327-335.
doi: 10.1016/j.nanoen.2017.12.013
L. Xiao, H. Lu, Y. Fang, et al., Adv. Energy Mater. 8(2018) 1703238.
doi: 10.1002/aenm.201703238
D. Datta, J. Li, V.B. Shenoy, ACS Appl. Mater. Interfaces 6(2014) 1788-1795.
doi: 10.1021/am404788e
Y. Zhu, M. Chen, Q. Li, C. Yuan, C. Wang, Carbon 129(2018) 695-701.
doi: 10.1016/j.carbon.2017.12.103
Q. Lin, J. Zhang, D. Kong, et al., Adv. Energy Mater. 9(2019) 1803078.
doi: 10.1002/aenm.201803078
P. Wang, X. Zhu, Q. Wang, et al., J. Mater. Chem. A 5(2017) 5761-5769.
doi: 10.1039/C7TA00639J
D. Sun, B. Luo, H. Wang, et al., Nano Energy 64(2019) 103937.
doi: 10.1016/j.nanoen.2019.103937
C. Bommier, W. Luo, W.Y. Gao, et al., Carbon 76(2014) 165-174.
doi: 10.1016/j.carbon.2014.04.064
K.L. Hong, L. Qie, R. Zeng, J. Mater. Chem. A 2(2014) 12733-12738.
doi: 10.1039/C4TA02068E
W. Luo, C. Bommier, Z. Jian, et al., ACS Appl. Mater. Interfaces 7(2015) 2626-2631.
doi: 10.1021/am507679x
N. Zhang, C. Gao, Y. Xiong, J. Energy Chem. 37(2019) 43-57.
doi: 10.1016/j.jechem.2018.09.010
J. Liu, P. Kopold, C. Wu, et al., Energy Environ. Sci. 8(2015) 3531-3538.
doi: 10.1039/C5EE02074C
F. Xie, Z. Xu, A.C.S. Jensen, et al., Adv. Funct. Mater. 29(2019) 1901072.
doi: 10.1002/adfm.201901072
X. Sun, C. Wang, Y. Gong, et al., Nano Micro Small 14(2018) 1802218.
W. Chen, M. Wan, Q. Liu, et al., Small Method. 3(2019) 1800323.
doi: 10.1002/smtd.201800323
C. Chen, Y. Lu, Y. Ge, et al., Energy Tech. 4(2016) 1440-1449.
doi: 10.1002/ente.201600205
Z. He, M. Li, Y. Li, et al., Appl. Surface Sci. 469(2019) 423-430.
doi: 10.1016/j.apsusc.2018.10.220
J. Zhu, C. Chen, Y. Lu, et al., Carbon 94(2015) 189-195.
doi: 10.1016/j.carbon.2015.06.076
R. Li, J. Huang, J. Li, et al., ChemElectroChem 7(2020) 604-613.
doi: 10.1002/celc.201901770
H. Lim, S. Yu, W. Choi, S.O. Kim, ACS Nano 15(2021) 7409-7420.
doi: 10.1021/acsnano.1c00797
M. Guo, J. Huang, X. Kong, et al., Carbon Mater. 31(2016) 352-362.
doi: 10.1016/S1872-5805(16)60019-7
Y. Li, Y. Yuan, Y. Bai, et al., Adv. Energy Mater. 8(2018) 1702781.
doi: 10.1002/aenm.201702781
Z. Li, L. Ma, T.W. Surta, et al., ACS Energy Lett. 1(2016) 395-401.
doi: 10.1021/acsenergylett.6b00172
L. Qie, W. Chen, X. Xiong, et al., Adv. Sci. 2(2015) 1500195.
X. Wang, G. Li, F.M. Hassan, et al., Nano Energy 15(2015) 746-754.
doi: 10.1016/j.nanoen.2015.05.038
B. Quan, A. Jin, S.H. Yu, et al., Adv. Sci. 5(2018) 1700880.
doi: 10.1002/advs.201700880
G. Zhao, D. Yu, H. Zhang, et al., Nano Energy. 67(2020) 104219.
doi: 10.1016/j.nanoen.2019.104219
P. Feng, W. Wang, K. Wang, S. Cheng, K. Jiang, J. Alloys Compd. 795(2019) 223-232.
doi: 10.1016/j.jallcom.2019.04.338
J. Li, X. Li, D. Xiong, et al., RSC Adv. 7(2017) 55060-55066.
doi: 10.1039/C7RA09349G
R.H. Arendt, W.D. Pasco, J. Electrochem. Soc. 134(1987) 733.
doi: 10.1149/1.2100542
H. Li, K. Wang, W. Li, S. Cheng, K. Jiang, J. Mater. Chem. A 3(2015) 16495-46500.
doi: 10.1039/C5TA03250D
L. Liu, J. Sun, Z. Du, et al., Chem. Commun. 56(2020) 11422-11425.
doi: 10.1039/D0CC04112B
J.Y. Hwang, S.T. Myung, Y.K. Sun, Phys. Chem. C 122(2018) 13500-13507.
doi: 10.1021/acs.jpcc.7b12140
Q. Liu, Z. Hu, M. Chen, et al., Nano Micro Small 15(2019) 1805381.
F. Sauvage, L. Laffont, J.M. Tarascon, E. Baudrin, Inorg. Chem. 46(2007) 3289-3294.
doi: 10.1021/ic0700250
Z. Dai, U. Mani, H.T. Tan, Q. Yan, Small Method. 1(2017) 1700098.
doi: 10.1002/smtd.201700098
Y. Lu, S. Zhang, Y. Li, et al., J. Power Sources 247(2014) 770-777.
doi: 10.1016/j.jpowsour.2013.09.018
X. Zhong, Z. Yang, Y. Jiang, et al., ACS Appl. Mater. Interfaces 8(2016) 32360-32365.
doi: 10.1021/acsami.6b11873
H. Li, X. Bi, Y. Bai, et al., Adv. Mater. Inter. 3(2016) 1500740.
doi: 10.1002/admi.201500740
S. Sakka, Y. Tanaka, T. Kokubo, J. No. Cryst. Solids. 82(1986) 24-30.
doi: 10.1016/0022-3093(86)90106-7
Q. Liu, D. Wang, X. Yang, et al., J. Mater. Chem. A 3(2015) 21478-21485.
doi: 10.1039/C5TA05939A
X.H. Ma, L.L. Li, L. Cheng, et al., J. Alloys Compd. 815(2020) 152402.
doi: 10.1016/j.jallcom.2019.152402
H. Hou, B. Gan, Y. Gong, N. Chen, C. Sun, Inorg. Chem. 55(2016) 9033-9037.
doi: 10.1021/acs.inorgchem.6b01515
G. Singh, B. Acebedo, M.C. Cabanas, et al., Electrochem. Commun. 37(2013) 61-63.
doi: 10.1016/j.elecom.2013.10.008
M. Liu, X. Wang, S. Wei, et al., Electrochem. Acta 269(2018) 479-789.
doi: 10.1016/j.electacta.2018.02.159
X. Deng, W. Shi, J. Sunarso, M. Liu, Z. Shao, ACS Appl. Mater. Interfaces 9(2017) 16280-16287.
doi: 10.1021/acsami.7b03933
A. Purwanto, C.S. Yudha, U. Ubaidillah, et al., Mater. Res. Express 5(2018) 122001.
doi: 10.1088/2053-1591/aae167
Z. Zhang, Y. Meng, Y. Wang, H. Yuan, D. Xiao, ChemElectroChem 5(2018) 3229-3235.
doi: 10.1002/celc.201800883
D. Zuo, C. Wang, J. Wu, et al., Solid State Ionics 336(2019) 120-128.
doi: 10.1016/j.ssi.2019.03.014
J. Wang, C. Mi, P. Nie, et al., J. Electroanal. Chem. 818(2018) 10-18.
doi: 10.1016/j.jelechem.2018.04.011
P. Feng, W. Wang, J. Hou, et al., Chem. Eng. J. 353(2018) 25-33.
doi: 10.1016/j.cej.2018.07.114
N. Daher, D. Huo, C. Davoisne, P. Meunier, R. Janot, ACS Appl. Energy Mater. 3(2020) 6501-6510.
doi: 10.1021/acsaem.0c00727
M. Dahbi, T. Nakano, N. Yabuuchi, et al., ChemElectroChem 3(2016) 1856-1867.
doi: 10.1002/celc.201600365
H. Song, A. Tang, G. Xu, et al., Int. J. Electrochem. Sci. 13(2018) 4720-4730.
J. Zhang, K. Zhang, J. Yang, et al., Chem. Mater. 32(2020) 448-458.
doi: 10.1021/acs.chemmater.9b04043
D. Lu, Z. Yao, Y. Zhong, et al., ACS Appl. Mater. Interfaces 11(2019) 15630-15637.
doi: 10.1021/acsami.9b02555
X. Dou, I. Hasa, D. Saurel, et al., ChemSusChem 11(2018) 3276-3285.
doi: 10.1002/cssc.201801148
B.H. Hou, Y.Y. Wang, D.S. Liu, et al., Adv. Funct. Mater. 28(2018) 1805444.
doi: 10.1002/adfm.201805444
J. Zhang, D.W. Wang, W. Lv, et al., Energy Environ. Sci. 10(2017) 370-376.
doi: 10.1039/C6EE03367A
J. Zhang, W. Wang, B. Li, Chem. Eng. J. 392(2020) 123810.
doi: 10.1016/j.cej.2019.123810
X. Li, X. Hu, L. Zhou, et al., J. Mater. Chem. A 7(2019) 11976-11984.
doi: 10.1039/C9TA01615E
H. Wan, X. Hu, Int. J. Hydorgen Energy 44(2019) 22250-22262.
doi: 10.1016/j.ijhydene.2019.06.107
T. Zhang, J. Mao, X. Liu, et al., RSC Adv. 7(2017) 41504-41511.
doi: 10.1039/C7RA07231G
K.H. Nam, Y. Hwa, C.M. Park, ACS Appl. Mater. Interfaces 12(2020) 15053-10562.
doi: 10.1021/acsami.9b21803
L. Fu, K. Tang, K. Song, P.A.V. Aken, Y. Yu, J. Mater, Nanoscale 6(2014) 1384-1389.
doi: 10.1039/C3NR05374A
F. Xie, Z. Xu, A.C.S. Jensen, et al., J. Mater. Chem. A 7(2019) 27567-27575.
doi: 10.1039/C9TA11369J
H. He, Q. Gan, H. Wang, et al., Nano Energy 44(2018) 217-227.
doi: 10.1016/j.nanoen.2017.11.077
M. Liu, J. Zhang, S. Guo, et al., ACS Appl. Matter. Interfaces 12(2020) 17620-17627.
doi: 10.1021/acsami.0c02230
Y. Wang, D. Kong, W. Shi, et al., Adv. Energy Mater. 6(2016) 1601057.
doi: 10.1002/aenm.201601057
X. Ou, C. Yang, X. Xiong, et al., Adv. Funct. Mater. 27(2017) 1606242.
doi: 10.1002/adfm.201606242
R. Ma, L. Fan, S. Chen, et al., ACS Appl. Mater. Interfaces 10(2018) 15751-15759.
doi: 10.1021/acsami.8b03648
K. Wang, Y. Jin, S. Sun, et al., ACS Omega 2(2017) 1687-1695.
doi: 10.1021/acsomega.7b00259
A. Sarkar, C.V. Manohar, S. Mitra, Nano Energy 70(2020) 104520.
doi: 10.1016/j.nanoen.2020.104520
D. Yang, S. Li, D. Cheng, et al., Energy Fuel. 35(2021) 2795-2804.
doi: 10.1021/acs.energyfuels.0c04258
S. Alvina, C. Chandra, J. Kim, Chem. Eng. J. 391(2020) 123576.
doi: 10.1016/j.cej.2019.123576
P.M.L. Le, T.D. Vo, H. Pan, et al., Adv. Funct. Mater. 30(2020) 2001151.
doi: 10.1002/adfm.202001151
L. Fan, X. Li, X. Song, et al., ACS Appl. Mater. Interfaces 10(2018) 2637-2648.
doi: 10.1021/acsami.7b18195
J.S. Park, G.D. Park, Y.C. Kang, J. Mater. Sci. Technol. 89(2021) 24-35.
doi: 10.1016/j.jmst.2021.01.076
Q. Pan, H. Chen, Z. Wu, et al., Chem. Eur. J. 25(2019) 971-975.
Q. He, K. Rui, C. Chen, J. Yang, Z. Wen, ACS Appl. Mater. Inter. 9(2017) 36927-36935.
doi: 10.1021/acsami.7b12503
C. Ma, L. Qiu, J. Bao, Y. Zhou, Chem. Res. Chin. Univ. 37(2021) 318-322.
doi: 10.1007/s40242-021-1030-9
S. Wang, Y. Zhu, M. Jiang, et al., Inter. J. Hydrogen Energy 45(2020) 19611-19619.
doi: 10.1016/j.ijhydene.2020.05.133
X. Dou, I. Hasa, M. Hekmatfar, et al., ChemSusChem 10(2017) 2668-2676.
doi: 10.1002/cssc.201700628
T. Wang, K. Yang, J. Shi, et al., J. Energy Chem. 46(2020) 71-77.
doi: 10.1016/j.jechem.2019.10.021
M. Chen, B. Li, X. Liu, et al., J. Mater. Chem. 6(2018) 3022-3027.
doi: 10.1039/C7TA10153H
L. Yan, H. Zhang, Z. Li, et al., ACS Appl. Energy Mater. 3(2020) 10255-10260.
doi: 10.1021/acsaem.0c02091
P. Wang, L. Fan, L. Yan, Z. Shi, J. Alloys Compd. 775(2019) 1028-1035.
doi: 10.1016/j.jallcom.2018.10.180
X. Liu, Y. Xiang, Q. Li, et al., Electrochem. Acta 387(2021) 138525.
doi: 10.1016/j.electacta.2021.138525
W.H. Guan, Q.Y. Lin, Z.Y. Lan, et al., Mater. Today Nano 12(2020) 100098.
doi: 10.1016/j.mtnano.2020.100098
H. Han, H. Lu, X. Jiang, et al., Electrochem. Acta 301(2019) 352-358.
doi: 10.1016/j.electacta.2019.02.002
S. Mirza, Z. Song, H. Zhang, et al., J. Mater. Chem. A 8(2020) 23368.
doi: 10.1039/D0TA08186H
Y.J. Park, J.U. Choi, J.H. Jo, et al., Adv. Funct. Mater. 29(2019) 1901912.
doi: 10.1002/adfm.201901912
K. Tang, Y. Wang, X. Zhang, et al., Electrochem. Acta 312(2019) 45-53.
doi: 10.1016/j.electacta.2019.04.183
L. Fang, Z. Lan, W. Guan, et al., Energy Storage Mater. 18(2019) 107-113.
doi: 10.1016/j.ensm.2018.10.002
Y.B. Niu, Y.J. Guo, Y.X. Yin, et al., Adv. Mater. 32(2020) 2001419.
doi: 10.1002/adma.202001419
X. Zhu, T. Mochiku, H. Fuji, et al., Nano Res. 11(2018) 6197-6205.
doi: 10.1007/s12274-018-2139-0
Y. Liu, Y. Qiao, W. Zhang, et al., Nano Energy 5(2014) 97-104.
doi: 10.1016/j.nanoen.2014.02.010
L. Bi, Z. Miao, X. Li, et al., Electrochem. Acta 337(2020) 135816.
doi: 10.1016/j.electacta.2020.135816
L. Zhang, J. Liu, C. Wei, et al., ACS Appl. Mater. Interfaces 12(2020) 3670-3680.
doi: 10.1021/acsami.9b20490
L. Fang, C. Wang, L. Huangfu, et al., Adv. Funct. Mater. 29(2019) 1906680.
doi: 10.1002/adfm.201906680
X. Wu, Y. Luo, M. Sun, et al., Nano Energy 13(2015) 117-123.
doi: 10.1016/j.nanoen.2015.02.006
F. Zan, Y. Yao, S.V. Savilov, E. Suslova, H. Xia, Funct. Mater. Lett. 13(2020) 205016.
H. Wang, M. Gu, J. Jiang, C. Lai, X. Ai, J. Power Sources 327(2016) 653- 657.
doi: 10.1016/j.jpowsour.2016.07.109
Q. Liu, Z. Hu, M. Chen, et al., ACS Appl. Mater. Interfaces 9(2017) 3644- 3652.
doi: 10.1021/acsami.6b13830
S. Jiao, J. Tuo, H. Xie, et al., Mater. Res. Bull. 86(2017) 194-200.
doi: 10.1016/j.materresbull.2016.10.019
N. Sabi, S. Doubaji, K. Hashimoto, et al., J. Power Sources 342(2017) 998-1005.
doi: 10.1016/j.jpowsour.2017.01.025
K. Wang, Z.G. Wu, T. Zhang, et al., Electrochem. Acta 216(2016) 51-57.
doi: 10.1016/j.electacta.2016.09.003
D. Zhou, W. Huang, F. Zhao, Solid State Ionics 322(2018) 18-23.
doi: 10.1016/j.ssi.2018.04.019
Q. Wang, K. Jiang, Y. Feng, et al., ACS Appl. Mater. Interfaces 12(2020) 39056-39062.
doi: 10.1021/acsami.0c09082
Y. Niu, M. Xu, B. Shen, C. Dai, C.M. Li, J. Mater. Chem A 4(2016) 16531-16535.
doi: 10.1039/C6TA05780B
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Liangju Zhao , Shiyu Qin , Fei Wu , Limin Zhu , Qing Han , Lingling Xie , Xuejing Qiu , Hongliang Wei , Lanhua Yi , Xiaoyu Cao . Polycarbonyl conjugated porous polyimide as anode materials for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(8): 110246-. doi: 10.1016/j.cclet.2024.110246
Fan Wu , Shaoyang Wu , Xin Ye , Yurong Ren , Peng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Fanjun Kong , Jing Zhang , Yuting Tang , Chencheng Sun , Chunfu Lin , Tao Zhang , Wangsheng Chu , Li Song , Liang Zhang , Shi Tao . Introducing high-valence element into P2-type layered cathode material for high-rate sodium-ion batteries. Chinese Chemical Letters, 2025, 36(8): 110993-. doi: 10.1016/j.cclet.2025.110993
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Xuan Wang , Peng Sun , Siteng Yuan , Lu Yue , Yufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015
Wenya Li , Yuanqi Yang , Yuqing Yang , Min Liang , Huizi Li , Xi Ke , Liying Liu , Yan Sun , Chunsheng Li , Zhicong Shi , Su Ma . Insights into magnesium and titanium co-doping to stabilize the O3-type NaCrO2 cathode material for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110388-. doi: 10.1016/j.cclet.2024.110388
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Guang Zeng , Yue Zeng , Huamin Hu , Yaqing Bai , Fangjie Nie , Junfei Duan , Zhaoyong Chen , Qi-Long Zhu . Regulating pore structure and pseudo-graphitic phase of hard carbon anode towards enhanced sodium storage performance. Chinese Chemical Letters, 2025, 36(7): 110122-. doi: 10.1016/j.cclet.2024.110122
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
Yanxue Wu , Xijun Xu , Shanshan Shi , Fangkun Li , Shaomin Ji , Jingwei Zhao , Jun Liu , Yanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062
Zheng Li , Fangkun Li , Xijun Xu , Jun Zeng , Hangyu Zhang , Lei Xi , Yiwen Wu , Linwei Zhao , Jiahe Chen , Jun Liu , Yanping Huo , Shaomin Ji . A scalable approach to Na4Fe3(PO4)2P2O7@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110390-. doi: 10.1016/j.cclet.2024.110390
Hong Yin , Danyang Han , Wei Wang , Zhaohui Hou , Miao Zhou , Ye Han , İhsan Çaha , João Cunha , Maryam Karimi , Zhixin Tai , Xinxin Cao . Bimetallic sulfide anodes based on heterojunction structures for high-performance sodium-ion battery anodes. Chinese Chemical Letters, 2025, 36(12): 110537-. doi: 10.1016/j.cclet.2024.110537
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
Tong Peng , Yupeng Xing , Lan Mu , Chenggang Wang , Ning Zhao , Wenbo Liao , Jianlei Li , Gang Zhao . Recent research on aqueous zinc-ion batteries and progress in optimizing full-cell performance. Chinese Chemical Letters, 2025, 36(6): 110039-. doi: 10.1016/j.cclet.2024.110039
Qiong Su , Chao Hu , Sichan Li , Wenjun Huang , Jianyu Dong , Ren Song , Lan Xu , Guozhao Fang . Sodium-ion batteries at low temperature: Storage mechanism and modification strategies. Chinese Chemical Letters, 2025, 36(12): 111267-. doi: 10.1016/j.cclet.2025.111267