Oxidations of two-dimensional semiconductors: Fundamentals and applications
-
* Corresponding author.
E-mail address: jian.sun@csu.edu.cn (J. Sun).
1 These authors contributed equally to this work.
Citation:
Junqiang Yang, Xiaochi Liu, Qianli Dong, Yaqi Shen, Yuchuan Pan, Zhongwang Wang, Kui Tang, Xianfu Dai, Rongqi Wu, Yuanyuan Jin, Wei Zhou, Song Liu, Jian Sun. Oxidations of two-dimensional semiconductors: Fundamentals and applications[J]. Chinese Chemical Letters,
;2022, 33(1): 177-185.
doi:
10.1016/j.cclet.2021.06.078
M.L. Chen, X. Sun, H. Liu, et al., Nat. Commun. 11 (2020) 1205.
doi: 10.1038/s41467-020-15096-0
C. Liu, H. Chen, S. Wang, et al., Nat. Nanotechnol. 15 (2020) 545-557.
doi: 10.1038/s41565-020-0724-3
H. Li, J.K. Huang, Y. Shi, et al., Adv. Mater. Interfaces 6 (2019) 1900220.
doi: 10.1002/admi.201900220
S. Manzeli, D. Ovchinnikov, D. Pasquier, O. Yazyev, A. Kis, Nat. Rev. Mater. 2 (2017) 17033.
doi: 10.1038/natrevmats.2017.33
S. Zhao, B. Dong, H. Wang, et al., Nanoscale Adv. 2 (2020) 109-139.
doi: 10.1039/c9na00623k
J. Sun, R.S. Deacon, W. Luo, et al., Commun. Phys. 3 (2020) 93.
doi: 10.1038/s42005-020-0357-8
X. Liu, Y. Yuan, Z. Wang, et al., Phys. Rev. Appl. 13 (2020) 044056.
doi: 10.1103/PhysRevApplied.13.044056
Y. Liu, X. Duan, H.J. Shin, et al., Nature 591 (2021) 43-53.
doi: 10.1038/s41586-021-03339-z
M. Chhowalla, D. Jena, H. Zhang, Nat. Rev. Mater. 1 (2016) 16052.
doi: 10.1038/natrevmats.2016.52
J. Sun, M. Muruganathan, H. Mizuta, Sci. Adv. 2 (2016) e1501518.
doi: 10.1126/sciadv.1501518
M. Muruganathan, J. Sun, T. Imamura, H. Mizuta, Nano Lett. 15 (2015) 8176-8180.
doi: 10.1021/acs.nanolett.5b03653
Z. Wang, Q. Jingjing, X. Wang, et al., Chem. Soc. Rev. 47 (2018) 6128-6174.
S. Bertolazzi, P. Bondavalli, S. Roche, et al., Adv. Mater. 31 (2019) 1806663.
doi: 10.1002/adma.201806663
X. Liu, X. Zhou, Y. Pan, et al., Adv. Mater. 32 (2020) 2004813.
doi: 10.1002/adma.202004813
J. Sun, M.E. Schmidt, M. Muruganathan, H. Chong, H. Mizuta, Nanoscale 8 (2016) 6659-6665.
doi: 10.1039/C6NR00253F
J. Sun, W. Wang, M. Muruganathan, H. Mizuta, Appl. Phys. Lett. 105 (2014) 033103.
doi: 10.1063/1.4891055
J. Mei, T. Liao, L. Kou, Z. Sun, Adv. Mater. 29 (2017) 1700176.
doi: 10.1002/adma.201700176
W. Bi, C. Wu, Y. Xie, ACS Energy Lett. 3 (2018) 624-633.
doi: 10.1021/acsenergylett.7b01343
X. Wang, Y. Sun, K. Liu, 2D Mater. 6 (2019) 042001.
doi: 10.1088/2053-1583/ab20d6
V. Tran, R. Soklaski, Y. Liang, L. Yang, Phys. Rev. B 89 (2014) 235319.
doi: 10.1103/PhysRevB.89.235319
A. Ziletti, A. Carvalho, D.K. Campbell, D.F. Coker, A.H. Castro, Phys. Rev. Lett. 114 (2015) 046801.
doi: 10.1103/PhysRevLett.114.046801
J.D. Wood, S.A. Wells, D. Jariwala, et al., Nano Lett. 14 (2014) 6964-6970.
doi: 10.1021/nl5032293
Y. Huang, J. Qiao, K. He, et al., Chem. Mater. 28 (2016) 8330-8339.
doi: 10.1021/acs.chemmater.6b03592
A. Favron, E. Gaufres, F. Fossard, et al., Nat. Mater. 14 (2015) 826-832.
doi: 10.1038/nmat4299
T. Ahmed, S. Balendhran, M.N. Karim, et al., NPJ 2D Mater. Appl. 1 (2017) 18.
doi: 10.1038/s41699-017-0023-5
S. Walia, Y. Sabri, T. Ahmed, et al., 2D Mater. 4 (2016) 015025.
doi: 10.1088/2053-1583/4/1/015025
A.E. Naclerio, D.N. Zakharov, J. Kumar, et al., ACS Appl. Mater. Interfaces 12 (2020) 15844-15854.
doi: 10.1021/acsami.9b21116
K.H. Oh, S.W. Jung, K.S. Kim, Appl. Surf. Sci. 504 (2020) 144341.
doi: 10.1016/j.apsusc.2019.144341
G. Mirabelli, C. McGeough, M. Schmidt, et al., J. Appl. Phys. 120 (2016) 125102.
doi: 10.1063/1.4963290
S. KC, R.C. Longo, R.M. Wallace, K. Cho, J. Appl. Phys. 117 (2015) 135301.
doi: 10.1063/1.4916536
P. Budania, P. Baine, J. Montgomery, et al., MRS Commun. 7 (2017) 813-818.
doi: 10.1557/mrc.2017.105
R.C. Longo, R. Addou, S. KC, et al., 2D Mater. 4 (2017) 025050.
doi: 10.1088/2053-1583/aa636c
S.S. Grønborg, K. Thorarinsdottir, L. Kyhl, et al., 2D Mater. 6 (2019) 045013.
doi: 10.1088/2053-1583/ab2d00
H. Liu, N. Han, J. Zhao, RSC Adv. 5 (2015) 17572-17581.
doi: 10.1039/C4RA17320A
X. Zhang, F. Jia, B. Yang, S. Song, J. Phys. Chem. C 121 (2017) 9938-9943.
doi: 10.1021/acs.jpcc.7b01863
J. Gao, B. Li, J. Tan, P. Chow, T. Lu, N. Koratkar, ACS Nano 10 (2016) 2628-2635.
doi: 10.1021/acsnano.5b07677
Y. Liu, C. Tan, H. Chou, et al., Nano Lett. 15 (2015) 4979-4984.
doi: 10.1021/acs.nanolett.5b02069
J.C. Kotsakidis, Q. Zhang, A.L. Vazquez de Parga, et al., Nano Lett. 19 (2019) 5205-5215.
doi: 10.1021/acs.nanolett.9b01599
J.H. Park, S. Vishwanath, X. Liu, et al., ACS Nano 10 (2016) 4258-4267.
doi: 10.1021/acsnano.5b07698
H. Zhu, Q. Wang, L. Cheng, et al., ACS Nano 11 (2017) 11005-11014.
doi: 10.1021/acsnano.7b04984
C. Si, D. Choe, W. Xie, et al., Nano Lett. 19 (2019) 3612-3617.
doi: 10.1021/acs.nanolett.9b00613
L. Muechler, W. Hu, L. Lin, C. Yang, R. Car Phys. Rev. B 102 (2020) 041103.
F. Ye, J. Lee, J. Hu, et al., Small 12 (2016) 5802-5808.
doi: 10.1002/smll.201601207
H.C. Diaz, R. Chaghi, Y. Ma, M. Batzill, 2D Mater. 2 (2015) 044010.
doi: 10.1088/2053-1583/2/4/044010
F. Hou, D. Zhang, P. Sharma, et al., ACS Appl. Electron. Mater. 2 (2020) 2196-2202.
doi: 10.1021/acsaelm.0c00380
S.H. Chae, Y. Jin, T.S. Kim, et al., ACS Nano 10 (2016) 1309-1316.
doi: 10.1021/acsnano.5b06680
S. Mañas-Valero, V. García-López, A. Cantarero, M. Galbiati, Appl. Sci. 6 (2016) 264.
doi: 10.3390/app6090264
Q. Yao, L. Zhang, P. Bampoulis, H.J.W. Zandvliet, J. Phys. Chem. C 122 (2018) 25498-25505.
doi: 10.1021/acs.jpcc.8b08713
A. Cruz, Z. Mutlu, M. Ozkan, et al., MRS Commun. 8 (2018) 1191-1196.
doi: 10.1557/mrc.2018.185
M.J. Mleczko, C. Zhang, H.R. Lee, et al., Sci. Adv. 3 (2017) e1700481.
doi: 10.1126/sciadv.1700481
Y. Guo, S. Zhou, Y. Bai, J. Zhao, ACS Appl. Mater. Interfaces 9 (2017) 12013-12020.
doi: 10.1021/acsami.6b16786
Y.K. Lee, Z. Luo, S.P. Cho, M.G. Kanatzidis, I. Chung, Joule 3 (2019) 719-731.
doi: 10.1016/j.joule.2019.01.001
E. Sutter, B. Zhang, M. Sun, et al., ACS Nano 13 (2019) 9352-9362.
doi: 10.1021/acsnano.9b03986
L.C. Gomes, A. Carvalho, A.C. Neto, Phys. Rev. B 94 (2016) 054103.
doi: 10.1103/PhysRevB.94.054103
S. Barraza-Lopez, T.P. Kaloni, ACS Cent. Sci. 4 (2018) 1436-1446.
doi: 10.1021/acscentsci.8b00589
D.J. Late, B. Liu, J. Luo, et al., Adv. Mater. 24 (2012) 3549-3554.
doi: 10.1002/adma.201201361
P.H. Ho, Y.R. Chang, Y.C. Chu, et al., ACS Nano 11 (2017) 7362-7370.
doi: 10.1021/acsnano.7b03531
M. Rahaman, R.D. Rodriguez, M. Monecke, S.A. Lopez-Rivera, D.R.T. Zahn, Semicond. Sci. Technol. 32 (2017) 105004.
doi: 10.1088/1361-6641/aa8441
T.E. Beechem, B.M. Kowalski, M.T. Brumbach, et al., Appl. Phys. Lett. 107 (2015) 173103.
doi: 10.1063/1.4934592
A. Bergeron, J. Ibrahim, R. Leonelli, et al., Appl. Phys. Lett. 110 (2017) 241901.
doi: 10.1063/1.4986189
Y. Liu, P. Stradins, S.H. Wei, Angew. Chem. Int. Ed. 2016, 55, 965–968.
doi: 10.1002/anie.201508828
L. Shi, Q. Zhou, Y. Zhao, et al., J. Phys. Chem. Lett. 8 (2017) 4368-4373.
doi: 10.1021/acs.jpclett.7b02059
Y. Guo, S. Zhou, Y. Bai, J. Zhao, J. Chem. Phys. 147 (2017) 104709.
doi: 10.1063/1.4993639
L. Shi, Q. Li, Y. Ouyang, J. Wang, Nanoscale 10 (2018) 12180-12186.
doi: 10.1039/C8NR01533C
M. Kang, S. Rathi, I. Lee, et al., Appl. Phys. Lett. 106 (2015) 143108.
doi: 10.1063/1.4917458
F. Alsaffar, S. Alodan, A. Alrasheed, et al., Sci. Rep. 7 (2017) 44540.
doi: 10.1038/srep44540
X. Luo, Y. Rahbarihagh, J.C. Hwang, et al., IEEE Electron. Device Lett. 35 (2014) 1314-1316.
doi: 10.1109/LED.2014.2362841
T. Kanazawa, T. Amemiya, V. Upadhyaya, et al., Proceedings of the 16th International Conference Nanotechnology, 2016, pp. 865–867.
R. Galceran, E. Gaufres, A. Loiseau, et al., Appl. Phys. Lett. 111 (2017) 243101.
doi: 10.1063/1.5008484
N. Lee, H. Jeon, ECS J. Solid State Sci. Technol. 10 (2021) 023001.
doi: 10.1149/2162-8777/abddd7
H. Liu, K. Xu, X. Zhang, et al., Appl. Phys. Lett. 100 (2012) 152115.
doi: 10.1063/1.3703595
W. Li, J. Zhou, S. Cai, et al., Nat. Electron. 2 (2019) 563-571.
doi: 10.1038/s41928-019-0334-y
T. Nam, S. Seo, H. Kim, J. Vac. Sci. Technol. A 38 (2020) 030803.
doi: 10.1116/6.0000068
L. Cheng, X. Qin, A.T. Lucero, et al., ACS Appl. Mater. Interfaces 6 (2014) 11834-11838.
doi: 10.1021/am5032105
J.H. Park, S. Fathipour, I. Kwak, K. Sardashti, A.C. Kummel, ACS Nano 10 (2016) 6888-6896.
doi: 10.1021/acsnano.6b02648
H. Zhu, R. Addou, Q. Wang, et al., Nanotechnology 31 (2019) 055704.
X. Liu, Y. Yuan, D. Qu, et al., Phys. Status Solidi RRL 13 (2019) 1900208.
doi: 10.1002/pssr.201900208
A.J. Cho, J.Y. Kwon, ACS Appl. Mater. Interfaces 11 (2019) 39765-39771.
doi: 10.1021/acsami.9b11219
X. Chen, Y. Wu, Z. Wu, et al., Nat. Commun. 6 (2015) 7315.
doi: 10.1038/ncomms8315
D. Yue, D. Lee, Y.D. Jang, et al., Nanoscale 8 (2016) 12773-12779.
doi: 10.1039/C6NR02554D
G. Long, D. Maryenko, J. Shen, et al., Nano Lett. (2016) 7768–7773.
doi: 10.1021/acs.nanolett.6b03951
H. Arora, Y. Jung, T. Venanzi, et al., ACS Appl. Mater. Interfaces 11 (2019) 43480-43487.
doi: 10.1021/acsami.9b13442
J. Holler, L. Bauriedl, T. Korn, et al., 2D Mater. 7 (2019) 015012.
X. Liu, D. Qu, Y. Yuan, et al., ACS Appl. Mater. Interfaces 12 (2020) 26586-26592.
doi: 10.1021/acsami.0c03762
N. Higashitarumizu, H. Kawamoto, M. Nakamura, et al., Nanoscale 10 (2018) 22474–22483.
doi: 10.1039/c8nr06390g
C.R. Ryder, J.D. Wood, S.A. Wells, et al., Nat. Chem. 8 (2016) 597-602.
doi: 10.1038/nchem.2505
S. Walia, S. Balendhran, T. Ahmed, et al., Adv. Mater. 29 (2017) 1700152.
doi: 10.1002/adma.201700152
C. Su, Z. Yin, Q.B. Yan, et al., Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 20844-20849.
doi: 10.1073/pnas.1909500116
J. H. Park, A. Sanne, Y. Guo, et al. Sci. Adv. 3 (2017) e1701661.
doi: 10.1126/sciadv.1701661
X. Xu, Z. Chen, B. Sun, et al., Sci. Bull. 64 (2019) 1700-1706.
doi: 10.1016/j.scib.2019.09.009
K. Cho, J. Pak, S. Chung, T. Lee, ACS Nano 13 (2019) 9713–9734.
doi: 10.1021/acsnano.9b02540
X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Chem. Soc. Rev. 44 (2015) 8859-8876.
doi: 10.1039/C5CS00507H
J. Gusakova, X. Wang, L.L. Shiau, et al., Phys. Status Solidi (a)214 (2017) 1700218.
doi: 10.1002/pssa.201700218
Z. Li, S. Yang, R. Dhall, et al., ACS Nano 10 (2016) 6836-6842.
doi: 10.1021/acsnano.6b02488
H. Zhu, X. Qin, L. Cheng, A. Azcatl, R.M. Wallace, ACS Appl. Mater. Interfaces 8 (2016) 19119-19126.
doi: 10.1021/acsami.6b04719
Q. Wang, J. Chen, Y. Zhang, et al., Nanomaterials 9 (2019) 756.
doi: 10.3390/nano9050756
X. Zheng, Y. Wei, C. Deng, et al., ACS Appl. Mater. Interfaces 10 (2018) 30045-30050.
doi: 10.1021/acsami.8b11003
M. Yamamoto, S. Dutta, S. Aikawa, et al., Nano Lett. 15 (2015) 2067-2073.
doi: 10.1021/nl5049753
A.I. Dago, Y. Ryu, F.J. Palomares, et al., ACS Appl. Mater. Interfaces 10 (2018) 40054-40061.
doi: 10.1021/acsami.8b15937
S.S. Wu, T.X. Huang, K.Q. Lin, et al., 2D Mater. 6 (2019) 045052.
doi: 10.1088/2053-1583/ab42b6
I. -S. Byun, D. Yoon, J. S. Choi et al., ACS Nano 5 (2011) 6417–6424.
doi: 10.1021/nn201601m
S. Masubuchi, M. Arai, T. Machida, Nano Lett. 11 (2011) 4542–4546.
doi: 10.1021/nl201448q
X. Liu, K.S. Chen, S.A. Wells, et al., Adv. Mater. 29 (2017) 1604121.
doi: 10.1002/adma.201604121
L. Loh, Z. Zhang, M. Bosman, G. Eda, Nano Res. 14 (2021) 1668-1681.
doi: 10.1007/s12274-020-3013-4
J. Suh, T.E. Park, D.Y. Lin, et al., Nano Lett. 14 (2014) 6976-6982.
doi: 10.1021/nl503251h
J. Suh, T.L. Tan, W. Zhao, et al., Nat. Commun. 9 (2018) 199.
doi: 10.1038/s41467-017-02631-9
Y. Wang, Y. Zheng, C. Han, et al., Nano Res. 14 (2021) 1682-1697.
doi: 10.1007/s12274-020-2919-1
Z. Wang, Y. Yuan, X. Liu, et al., ACS Nano 13 (2019) 7502-7507.
doi: 10.1021/acsnano.9b02935
Z. Wang, J. Sun, M. Muruganathan, H. Mizuta, Appl. Phys. Lett. 113 (2018) 133101.
doi: 10.1063/1.5042696
I. Moon, S. Lee, M. Lee, et al., Nanoscale 11 (2019) 17368–17375.
doi: 10.1039/c9nr05881h
S. Chuang, C. Battaglia, A. Azcatl, et al., Nano Lett. 14 (2012) 1337-1342.
P.R. Pudasaini, A. Oyedele, C. Zhang, et al., Nano Res. 11 (2018) 722-730.
doi: 10.1007/s12274-017-1681-5
A.N. Hoffman, M.G. Stanford, M.G. Sales, et al., 2D Mater. 6 (2019) 045024.
doi: 10.1088/2053-1583/ab2fa7
M. Yamamoto, S. Nakaharai, K. Ueno, et al., Nano Lett. 16 (2016) 2720-2727.
doi: 10.1021/acs.nanolett.6b00390
A. Allain, J. Kang, K. Banerjee, A. Kis, Nat. Mater. 14 (2015) 1195-1205.
doi: 10.1038/nmat4452
S. Haldar, H. Vovusha, M.K. Yadav, O. Eriksson, B. Sanyal, Phys. Rev. B 92 (2015) 235408.
doi: 10.1103/PhysRevB.92.235408
X. Liu, D. Qu, L. Wang, et al., Adv. Funct. Mater. 30 (2020) 2004880.
doi: 10.1002/adfm.202004880
S. Kang, Y. S. Kim, J. H. Jeong, et al., ACS Appl. Mater. Interfaces 13 (2021) 1245–1252.
doi: 10.1021/acsami.0c18364
H. Nan, Z. Wang, W. Wang, et al., ACS Nano 8 (2014) 5738-5745.
doi: 10.1021/nn500532f
T. F. D. Fernandes, A. de C. Gadelha, A. P. M. Barboza, 2D Mater. 5 (2018) 025018.
doi: 10.1088/2053-1583/aab38c
N. Kang, H. P. Paudel, M. N. Leuenberger, L. Tetard, S. I. Khondaker, J. Phys. Chem. C 118 (2014) 21258–21263.
doi: 10.1021/jp506964m
Y.Y. Illarionov, T. Knobloch, M. Jech, et al., Nat. Commun. 11 (2020) 3385.
doi: 10.1038/s41467-020-16640-8
S. Lai, S. Byeon, S.K. Jang, et al., Nanoscale 10 (2018) 18758-18766.
doi: 10.1039/c8nr06020g
K. Xu, Y. Huang, B. Chen, et al., Small 12 (2016) 3106-3111.
doi: 10.1002/smll.201600521
X. Zou, J. Wang, C.H. Chiu, et al., Adv. Mater. 26 (2014) 6255-6261.
doi: 10.1002/adma.201402008
N. Peimyoo, M. Barnes, J. Mehew, et al., Sci. Adv. 5 (2019) eaau0906.
W. Dickerson, V. Tayari, I. Fakih, et al., Appl. Phys. Lett. 112 (2018) 173101.
doi: 10.1063/1.5011424
B. Chamlagain, Q. Cui, S. Paudel, et al., 2D Mater. 4 (2017) 031002.
doi: 10.1088/2053-1583/aa780e
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
Jing Guo , Jianzhong Ma , Junli Liu , Guanjie Huang , Xiaoting Zhou , Francesco Parrino , Riccardo Ceccato , Leonardo Palmisano , Boon-Junn Ng , Lutfi Kurnianditia Putri , Huaxing Li , Rongjie Li , Gang Liu , Yang Wang , Nikolay Kornienko , Shan-Shan Zhu , Zhenwei Zhang , Xiaoming Liu , Nur Atika Nikma Dahlan , Siang-Piao Chai , Jianmin Ma . Two-dimensional nanomaterials for environmental catalysis roadmap towards 2030. Chinese Chemical Letters, 2025, 36(9): 110988-. doi: 10.1016/j.cclet.2025.110988
Fengjun Deng , Tingyu Zhao , Xiaochen Zhang , Kaiyong Feng , Ze Liu , Youlin Xiang , Yingjian Yu . Reduced graphene oxide assembled on the Si nanowire anode enabling low passivation and hydrogen evolution for long-life aqueous Si-air batteries. Chinese Chemical Letters, 2025, 36(6): 109897-. doi: 10.1016/j.cclet.2024.109897
Haobo Wang , Fei Wang , Yong Liu , Zhongxiu Liu , Yingjie Miao , Wanhong Zhang , Guangxin Wang , Jiangtao Ji , Qiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589
Rui Li , Ruijie Lu , Libin Yang , Jianwen Li , Zige Guo , Qiquan Yan , Mengjun Li , Yazhuo Ni , Keying Chen , Yaoyang Li , Bo Xu , Mengzhen Cui , Zhan Li , Zhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242
Kai Li , Hui Fang , Feixia Ruan , Xiaochun Xie , Huicong Zhou , Zhenjun Luo , Dan Shao , Mingqiang Li , Qing Yuan , Fangman Chen , Yu Tao . ROS-neutralizing surface engineering protects immunotoxicity of organic nanoscintillator-directed radiodynamic therapy. Chinese Chemical Letters, 2025, 36(12): 111261-. doi: 10.1016/j.cclet.2025.111261
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Sheng Tang , Mingyue Liao , Weihai Sun , Jihuai Wu , Jiamin Lu , Yiming Xie . Optimizing CsPbBr3 perovskite solar cell interface and performance through tetraphenylethene derivatives. Chinese Chemical Letters, 2025, 36(6): 110838-. doi: 10.1016/j.cclet.2025.110838
Ya Han , Yingjian Yu . Ultralong discharge time enabled using etched germanium anodes in germanium-air batteries. Chinese Chemical Letters, 2025, 36(7): 110144-. doi: 10.1016/j.cclet.2024.110144
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Wenjuan Liu , Shanshan Zhang , Yu Wang , Bin Fang , Weirui Wang , Shujing Song , Tomohiro Hakozaki . Three-channel imaging reveals the comprehensive protein modifications and their impact on skin appearance induced by multiple stimuli. Chinese Chemical Letters, 2025, 36(6): 111182-. doi: 10.1016/j.cclet.2025.111182
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Zeyin Chen , Jiaju Shi , Yusheng Zhou , Peng Zhang , Guodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629
Jianwen Zhao , Shuai Wang , Shanshan Zhao , Liwei Chen , Fangang Meng , Xuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883
Zhenyang Yu , Yueyue Gu , Qi Sun , Yang Zheng , Yifang Zhang , Mengmeng Zhang , Delin Zhang , Zhijia Zhang , Yong Jiang . Research progress of modified metal current collectors in sodium metal anodes. Chinese Chemical Letters, 2025, 36(6): 109997-. doi: 10.1016/j.cclet.2024.109997
Jun-Yang Wang , Yu-Qing Wei , Qing-Ning Wang , Zhi-Guo Wang , Rui Hong , Lisha Yi , Ping Xu , Jia-Zhuang Xu , Zhong-Ming Li , Baisong Zhao . Mucus-inspired lubricative antibacterial coating to reduce airway complications in an intubation cynomolgus monkey model. Chinese Chemical Letters, 2025, 36(8): 110559-. doi: 10.1016/j.cclet.2024.110559
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797