Citation: Peipei Jiang, Tingting Zhao, Jian Rong, Bangshao Yin, Yutao Rao, Mingbo Zhou, Ling Xu, Jianxin Song. Multi-(phenylthio)porphyrinato Ni(Ⅱ) compounds: Synthesis, structures and properties[J]. Chinese Chemical Letters, ;2021, 32(8): 2562-2566. doi: 10.1016/j.cclet.2021.02.022 shu

Multi-(phenylthio)porphyrinato Ni(Ⅱ) compounds: Synthesis, structures and properties

    *Corresponding authors.
    E-mail addresses: xulingchem@hunnu.edu.cn (L. Xu), jxsong@hunnu.edu.cn (J. Song).
  • Received Date: 24 December 2020
    Revised Date: 2 February 2021
    Accepted Date: 10 February 2021
    Available Online: 15 February 2021

Figures(4)

  • A series of multi-(phenylthio)porphyrinato Ni(ò) compounds were synthesized without the participation of transition metal catalysts. All of these products were well characterized by 1H NMR, 13C NMR and HRMS. Structures of three typical compounds were further confirmed by X-ray single crystal diffraction. Remarkable red shifts were observed in UVɃvis absorption spectra of multi-(phenylthio)porphyrinato Ni(ò) compounds which meet well with the electrochemical data. DFT calculation indicates that the phenylthio groups have strong effects on the frontier orbitals of these molecules. The order of a1u-like and a2u-like orbitals mainly distributed in porphyrin moiety is often inversed in energy when multi-phenylthio groups are attached.
  • 加载中
    1. [1]

      (a) K.M. Kadish, K.M. Smith, R. Guilard, The Porphyrin Handbook San Diego, (2000);
      (b) C. Li, J. Zhang, J. Song, Y. Xie, J. Jiang, Sci. China Chem. 61 (2018) 511-514;
      (c) W. Miao, Z. Zhu, Z. Li, E. Hao, L. Jiao, Chin. Chem. Lett. 30 (2019) 1895-1902.

    2. [2]

      (a) K. Zeng, Z. Tong, L. Ma, et al., Energy Environ. Sci. 13 (2020) 1617-1657;
      (b) A. Mahmood, J.Y. Hu, B. Xiao, et al., J. Mater. Chem. A 6 (2018) 16769-16797;
      (c) M. Urbani, M. Grätzel, M.K. Nazeeruddin, T. Torres, Chem. Rev. 114 (2014) 12330-12396;
      (d) L.L. Li, E.W.G. Diau, Chem. Soc. Rev. 42 (2013) 291-304;
      (e) Y. Rio, P. Vázquez, E. Palomares, J. Porphyrins Phthalocyanines 13 (2009) 646-651.

    3. [3]

      (a) M. Pawlicki, H.A. Collins, R.G. Denning, H.L. Anderson, Angew. Chem. Int. Ed. 48 (2009) 3244-3266;
      (b) N. Aratani, D. Kim, A. Osuka, Chem. Asian J. 4 (2009) 1172-1182;
      (c) K.S. Kim, J.M. Lim, A. Osuka, D. Kim, J. Photochem. Photobiol. C 9 (2008) 13-28.

    4. [4]

      (a) J. Tian, B. Huang, M.H. Nawaz, W. Zhang, Coord. Chem. Rev. 420 (2020) 213410-213429;
      (b) S.M.M. Lopes, M. Pineiro, T.M.V.D. Pinho e Melo, Molecules 25 (2020) 3450-3488;
      (c) R.D. Teo, J.Y. Hwang, J. Termini, Z. Gross, H.B. Gray, Chem. Rev. 117 (2017) 2711-2729;
      (d) M. Ethirajan, Y. Chen, P. Joshi, R.K. Pandey, Chem. Soc. Rev. 40 (2011) 340-362.

    5. [5]

      M. Berthelot, G. Hoffmann, A. Bousfiha, et al., Chem. Commun. (Camb. ) 54(2018) 5414-5417.  doi: 10.1039/C8CC01375F

    6. [6]

      R.A. Binstead, M.J. Crossley, N.S. Hush, Inorg. Chem. 30(1991) 1259-1264.  doi: 10.1021/ic00006a019

    7. [7]

      M.S. Liao, S. Scheiner, Chem. Phys. Lett. 367(2003) 199-206.  doi: 10.1016/S0009-2614(02)01700-1

    8. [8]

      (a) L.L. Yang, X.L. Hu, Z.Q. Tang, X.F. Li, Chem. Lett. 44 (2015) 1515-1517;
      (b) D.M. Shen, C. Liu, X.G. Chen, Q.Y. Chen, J. Org. Chem. 74 (2009) 206-211.

    9. [9]

      (a) A. Jana, M. Ishida, K. Kwak, et al., Chem. Eur. J. 19 (2013) 338-349;
      (b) K.A. Nielsen, E. Levillain, V.M. Lynch, J.L. Sessler, J.O. Jeppesen, Chem. Eur. J. 15 (2009) 506-516;
      (c) H. Li, J.O. Jeppesen, E. Levillain, J. Becher Chem. Commun. (2003) 846-847;
      (d) J. Becher, T. Brimert, J.O. Jeppesen, et al., Angew. Chem. Int. Ed. 40 (2001) 2497-2500;
      (e) K.I. Sugiura, K. Ushiroda, M.T. Johnson, J.S. Miller, Y. Sakata, J. Mater. Chem. 10 (2000) 2507-2514;
      (f) K.I. Sugiura, M.R. Kumar, T.K. Chandrashekar, Y. Sakata, Chem. Lett. 26 (1997) 291-292.

    10. [10]

      (a) N. Fukui, A. Osuka, Bull. Chem. Soc. Jpn. 91 (2018) 1131-1137;
      (b) K. Fujimoto, H. Yorimitsu, A. Osuka, Org. Lett. 16 (2014) 972-975;
      (c) A.A. Ryan, S. Plunkett, A. Casey, T. McCabe, M.O. Senge, Chem. Commun. (Camb. ) 50 (2014) 353-355;
      (d) G.Y. Gao, A.J. Colvin, Y. Chen, X.P. Zhang, J. Org. Chem. 69 (2004) 8886-8892.

    11. [11]

      (a) H.C. Sample, M.O. Senge, Eur. J. Org. Chem. 2021 (2021) 7-42;
      (b) M. Kielmann, K.J. Flanagan, K. Norvaiša, D. Intrieri, M.O. Senge, J. Org. Chem. 82 (2017) 5122-5134;
      (c) Q. Chen, Y.Z. Zhu, Q.J. Fan, S.C. Zhang, J.Y. Zheng, Org. Lett. 16 (2014) 1590-1593;
      (d) M.J. Crossley, P.L. Burn, S.S. Chew, F.B. Cuttance, I.A. Newsom, J. Chem. Soc. Chem. Commun. (1991) 1564-1566;
      (e) F. Ma, L. Zhou, Q. Liu, C. Li, Y. Xie, Org. Lett. 21 (2019) 733-736.

    12. [12]

      N. Fukui, H. Yorimitsu, A. Osuka, Angew. Chem. Int. Ed. 54(2015) 6311-6314.  doi: 10.1002/anie.201501149

    13. [13]

      (a) A. Tsuda, H. Furuta, A. Osuka, J. Am. Chem. Soc. 123 (2001) 10304-10321;
      (b) D. Shimizu, K. Fujimoto, A. Osuka, Angew. Chem. Int. Ed. 57 (2018) 9434-9438;
      (c) K. Kato, K. Furukawa, A. Osuka, Chem. Eur. J. 24 (2018) 572-575.

    14. [14]

      (a) K. Fujimoto, H. Yorimitsu, A. Osuka, Org. Lett. 16 (2014) 972-975;
      (b) K. Fujimoto, H. Yorimitsu, A. Osuka, Org. Lett. 16 (2014) 3172.

  • 加载中
    1. [1]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    2. [2]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    3. [3]

      Zeyuan ZhangZixuan LiChenjing LiuYali HouKe GaoShijin JianGuoping LiGang HeMingming Zhang . Porphyrin metallacage-based host-guest complexation for highly efficient photocatalytic hydrogen production. Chinese Chemical Letters, 2025, 36(12): 111322-. doi: 10.1016/j.cclet.2025.111322

    4. [4]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    5. [5]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    6. [6]

      Mei ZhaoFengyang ZhaoJiantao PingWenli WuLingxi ZhaoXinyue LuanLi YuShuhua LiuYongxian GuoJuyoung YoonQiongzheng Hu . A recyclable covalent organic framework for selective removal of Hg(Ⅱ) and sunlight-driven sterilization in water. Chinese Chemical Letters, 2025, 36(10): 110782-. doi: 10.1016/j.cclet.2024.110782

    7. [7]

      Quanxin NingYidan ZhangHuayi SunXin ZhaoHaodong ZhangFeng CuiXiaochun XieFangman ChenWen SunHong Zhang . Light-harvesting pigment-binding protein-mimicking carbon dots for photodynamic therapy. Chinese Chemical Letters, 2025, 36(11): 111133-. doi: 10.1016/j.cclet.2025.111133

    8. [8]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    9. [9]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    10. [10]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    11. [11]

      Shuai ChenAnzai ShiGuoqing YangPengfei XieFeng LiuYouai Qiu . Electrochemical demethoxyl-cyanation of methoxyarenes via SNAr. Chinese Chemical Letters, 2025, 36(9): 110810-. doi: 10.1016/j.cclet.2024.110810

    12. [12]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    13. [13]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    14. [14]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    15. [15]

      Wenzheng ChenWeiyun ChenBin ChenMingbao Feng . Deciphering the electron-shuttling role of iron(Ⅲ) porphyrin in modulating the reductive UV/S(Ⅳ) system into the oxidative strategy for micropollutant abatement. Chinese Chemical Letters, 2025, 36(10): 110743-. doi: 10.1016/j.cclet.2024.110743

    16. [16]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    17. [17]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    18. [18]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    19. [19]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    20. [20]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

Metrics
  • PDF Downloads(3)
  • Abstract views(1181)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return