Citation: Penglong Wang, Qin Zhu, Yi Wang, Guixiang Zeng, Jun Zhu, Congqing Zhu. Carbon-halogen bond activation by a structurally constrained phosphorus(Ⅲ) platform[J]. Chinese Chemical Letters, ;2021, 32(4): 1432-1436. doi: 10.1016/j.cclet.2020.11.005 shu

Carbon-halogen bond activation by a structurally constrained phosphorus(Ⅲ) platform

    *Corresponding authors.
    E-mail addresses: gxzeng@nju.edu.cn (G. Zeng), jun.zhu@xmu.edu.cn (J. Zhu), zcq@nju.edu.cn (C. Zhu).
    1 These authors contributed equally to this work.
  • Received Date: 14 September 2020
    Revised Date: 29 October 2020
    Accepted Date: 2 November 2020
    Available Online: 4 November 2020

Figures(7)

  • The σ-bond activation by main group element has received enormous attention from theoretical and experimental chemists. Here, the reaction of C–X (X=Cl, Br, Ⅰ) bonds in benzyl and allyl halides with a pincer-type phosphorus(Ⅲ) species was reported. A series of structurally robust phosphorus(Ⅴ) compounds were formed via the formal oxidative addition reactions of C–X bonds to the phosphorus(Ⅲ) center. Density functional theory calculations show that the nucleophilic addition process is more favorable than the direct oxidative addition mechanism. Isomerization of bent structures of phosphorus(Ⅲ) compound to poorly nucleophilic compounds to undergo further C–X bond activation can be rationalized by frontier molecule orbital analysis. This study not only provides a deep understanding of the reactivity of phosphorus(Ⅲ) species but also demonstrates a potential of main group elements for the small-molecule activation.
  • 加载中
    1. [1]

      L. Horner, W. Jurgeleit, K. Klupfel, Liebigs Ann. Chem. 591(1955) 108-117.  doi: 10.1002/jlac.19555910107

    2. [2]

      R.F. Hudson, Structure and Mechanism in Organophosphorus Chemistry, Academic Press, New York, 1965.

    3. [3]

      (a) X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 34 (2001) 535-544;
      (b) J.L. Methot, W.R. Roush, Adv. Synth. Catal. 346 (2004) 1035-1050;
      (c) L.W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 37 (2008) 1140-1152;
      (d) H. Guo, Y.C. Fan, Z. Sun, Y. Wu, O. Kwon, Chem. Rev. 118 (2018) 10049-10293;
      (e) G. Tao, Z. Duan, F. Mathey, Org. Lett. 21 (2019) 2273-2276;
      (f) L. Zhang, C. Liu, Z. Duan, F. Mathey, Eur. J. Inorg. Chem. (2017) 2504-2509;
      (g) R. Tian, H. Liu, Z. Duan, F. Mathey, J. Am. Chem. Soc. 131 (2009) 16008-16009.

    4. [4]

      (a) P.C.J. Kamer, P.W.N.M. van Leeuwen, Phosphorus(Ⅲ) Ligands in Homogeneous Catalysis: Design and Synthesis, Wiley, Hoboken, NJ, 2012;
      (b) V. Nair, R.S. Menon, A.R. Sreekanth, N. Abhilash, A.T. Biju, Acc. Chem. Res. 39 (2006) 520-530;
      (c) L.W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 37 (2008) 1140-1152.

    5. [5]

      D.G. Gilheany, Chem. Rev. 94(1994) 1339-1374.  doi: 10.1021/cr00029a008

    6. [6]

      (a) X. Lu, Y. Du, C. Lu, Pure Appl. Chem. 77 (2005) 1985-1990;
      (b) S.E. Denmark, G.L. Beutner, Angew. Chem. Int. Ed. 47 (2008) 1560-1638;
      (c) X. Zeng, Chem. Rev. 113 (2013) 6864-6900;
      (d) T. Wang, X. Han, F. Zhong, W. Yao, Y. Lu, Acc. Chem. Res. 49 (2016) 1369-1378.

    7. [7]

      (a) A. Brand, W. Uhl, Chem. Eur. J. 25 (2019) 1391-1404;
      (b) E. Coyle, C. O'Brien, Nat. Chem. 4 (2012) 779-780.

    8. [8]

      K. Lee, A.V. Blake, A. Tanushi, et al., Angew. Chem. Int. Ed. 58(2019) 6993-6998.  doi: 10.1002/anie.201901779

    9. [9]

      (a) S.A. Culley, A.J. Arduengo Ⅲ, J. Am. Chem. Soc. 106 (1984) 1164-1165;
      (b) A.J. Arduengo Ⅲ, C.A. Stewart, F. Davidson, et al., J. Am. Chem. Soc. 109 (1987) 627-647.

    10. [10]

      (a) N.L. Dunn, M. Ha, A.T. Radosevich, J. Am. Chem. Soc. 134 (2012) 11330-11333;
      (b) S.M. McCarthy, Y.C. Lin, D. Devarajan, et al., J. Am. Chem. Soc. 136 (2014) 4640-4650;
      (c) W. Zhao, S.M. McCarthy, T.Y. Lai, H.P. Yennawar, A.T. Radosevich, J. Am. Chem. Soc. 136 (2014) 17634-17644;
      (d) K.D. Reichl, N.L. Dunn, N.J. Fastuca, A.T. Radosevich, J. Am. Chem. Soc. 137 (2015) 5292-5295;
      (e) Y.C. Lin, E. Hatzakis, S.M. McCarthy, et al., J. Am. Chem. Soc. 139 (2017) 6008-6012;
      (f) T.V. Nykaza, T.S. Harrison, A. Ghosh, R.A. Putnik, A.T. Radosevich, J. Am. Chem. Soc. 139 (2017) 6839-6842;
      (g) T.V. Nykaza, A. Ramirez, T.S. Harrison, M.R. Luzung, A.T. Radosevich, J. Am. Chem. Soc. 140 (2018) 3103-3113;
      (h) A. Tanushi, A.T. Radosevich, J. Am. Chem. Soc. 140 (2018) 8114-8118;
      (i) T.V. Nykaza, J.C. Cooper, G. Li, et al., J. Am. Chem. Soc. 140 (2018) 15200-15205.

    11. [11]

      (a) T.P. Robinson, D.M. De Rosa, S. Aldridge, J.M. Goicoechea, Angew. Chem. Int. Ed. 54 (2015) 13758-13763;
      (b) T.P. Robinson, S.K. Lo, D. De Rosa, S. Aldridge, J.M. Goicoechea, Chem. Eur. J. 22 (2016) 15712-15724;
      (c) T.P. Robinson, D. De Rosa, S. Aldridge, J.M. Goicoechea, Chem. Eur. J. 23 (2017) 15455-15465.

    12. [12]

      (a) J. Cui, Y. Li, R. Ganguly, et al., J. Am. Chem. Soc. 136 (2014) 16764-16767;
      (b) J. Cui, Y. Li, R. Ganguly, R. Kinjo, Chem. Eur. J. 22 (2016) 9976-9985.

    13. [13]

      (a) A. Murillo, L.M. Chiquette, P. Joesphnathan, R. Contreras, Phosphorus Sulfur Silicon Relat, Elem. 53 (1990) 87-101;
      (b) M. Driess, N. Muresan, K. Merz, M. Päch, Angew. Chem. Int. Ed. 44 (2005) 6734-6737;
      (c) S. Volodarsky, R. Dobrovetsky, Chem. Commun. 54 (2018) 6931-6934;
      (d) A. Hentschel, A. Brand, P. Wegener, W. Uhl, Angew. Chem. Int. Ed. 57 (2018) 832-835.

    14. [14]

      Q. Zhu, P. Wang, J. Zhu, C. Zhu, G. Zeng, Inorg. Chem. 59(2020) 15636-15645.  doi: 10.1021/acs.inorgchem.0c01920

    15. [15]

      (a) G. Zeng, S. Maeda, T. Taketsugu, S. Sakaki, J. Am. Chem. Soc. 138 (2016) 13481-13484;
      (b) G. Zeng, S. Maeda, T. Taketsugu, S. Sakaki, ACS Catal. 6 (2016) 4859-4870;
      (c) A. Pal, K. Vanka, Inorg. Chem. 55 (2016) 558-565;
      (d) G. Zeng, S. Maeda, T. Taketsugu, S. Sakaki, Angew. Chem. Int. Ed. 53 (2014) 4633-4637.

    16. [16]

      A.W. Addison, T.N. Rao, Van J. Rijn, G.C. Veschoor, J. Reedijk, J. Chem. Soc., Dalton Trans. (1984) 1349-1356.

    17. [17]

      J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry, 4th ed., HarperCollins College Publishers, New York, 1993.

    18. [18]

      E.D. Glendening, J.K. Badenhoop, A.E. Reed, et al., Natural Bond Orbital 7.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013. http://nbo7.chem.wisc.edu/.

    19. [19]

      F.M. Bickelhaupt, K.N. Houk, Angew. Chem. Int. Ed. 56(2017) 10070-10086.  doi: 10.1002/anie.201701486

  • 加载中
    1. [1]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    2. [2]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    3. [3]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    4. [4]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    5. [5]

      Liang LouXuncheng LiuYuanyu WangTao HuZhongjie WangHouqiang ShiJunkai XiongSiqi JingLiankang YeQihui GuoXiang Ge . Achieving reusability of leachate for multi-element recovery of the discarded LiNixCoyMn1-x-yO2 cathode by regulating the co-precipitation coefficient. Chinese Chemical Letters, 2025, 36(5): 109726-. doi: 10.1016/j.cclet.2024.109726

    6. [6]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    7. [7]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    8. [8]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    9. [9]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    10. [10]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    11. [11]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    12. [12]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    13. [13]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    14. [14]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    15. [15]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    16. [16]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    17. [17]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    18. [18]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    19. [19]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    20. [20]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

Metrics
  • PDF Downloads(4)
  • Abstract views(718)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return