Citation: Qing-Wen Gui, Fan Teng, Sheng-Neng Ying, Liu Yang, Tao Guo, Jian-Xin Tang, Jin-Yang Chen, Zhong Cao, Wei-Min He. Ultrasound-assisted tandem synthesis of tri- and tetra-substituted pyrrole-2-carbonitriles from alkenes, TMSCN and N, N-disubstituted formamides[J]. Chinese Chemical Letters, ;2020, 31(12): 3241-3244. doi: 10.1016/j.cclet.2020.07.017 shu

Ultrasound-assisted tandem synthesis of tri- and tetra-substituted pyrrole-2-carbonitriles from alkenes, TMSCN and N, N-disubstituted formamides

    * Corresponding author.
    E-mail address: weiminhe2016@yeah.net (W.-M. He).
  • Received Date: 23 May 2020
    Revised Date: 15 June 2020
    Accepted Date: 8 July 2020
    Available Online: 9 July 2020

Figures(4)

  • An energy-saving and eco-friendly method for the efficient construction of various tri- and tetra-substituted pyrrolecarbonitriles through ultrasound-assisted multicomponent tandem reaction of readily available alkenes, TMSCN and N, N-disubstituted formamides within 40 min under metal-, solvent-free and mild conditions was developed. The dual role of iodine (catalyst and oxidant) notably simplified the reaction conditions and reduced the chemical waste generated.
  • 加载中
    1. [1]

      G. Chatel, R.S. Varma, Green Chem. 21(2019) 6043-6050.

    2. [2]

      (a) S.G. Pharande, A.R. Corrales Escobosa, R. Gamez-Montano, Green Chem.19(2017) 1259-1262;
      (b) C. Wu, L.H. Lu, A.Z. Peng, et al., Green Chem. 20(2018) 3683-3688;
      (c) L.H. Lu, S.J. Zhou, M. Sun, et al., ACS Sustain. Chem. Eng. 7(2019) 1574-1579.

    3. [3]

      (a) M.H. Huang, W.J. Hao, B. Jiang, Chem. Asian J. 13(2018) 2958-2977;
      (b) M.H. Xu, K.L. Dai, Y.Q. Tu, et al., Chem. Commun. 54(2018) 7685-7688;
      (c) S.S. Jiang, Y.C. Wu, S.Z. Luo, et al., Chem. Commun. 55(2019) 12805-12808;
      (d) K. Sun, B. Luan, Z. Liu, et al., Org. Biomol. Chem. 17(2019) 4208-4211;
      (e) C. Wan, R.J. Song, J.H. Li, Org. Lett. 21(2019) 2800-2803;
      (f) H. Ruan, L.G. Meng, L. Zhu, L. Wang, Adv. Synth. Catal. 361(2019) 3217-3222;
      (g) Q. Liu, F. Liu, H. Yue, et al., Adv. Synth. Catal. 361(2019) 5277-5282;
      (h) L. Zhao, P. Li, H. Zhang, L. Wang, Org. Chem. Front. 6(2019) 87-93;
      (i) G.P. Yang, X. Wu, B. Yu, C. Hu, ACS Sustain. Chem. Eng. 7(2019) 3727-3732;
      (j) X. Wang, Y.F. Han, X.H. Ouyang, R.J. Song, J.H. Li, Chem. Commun. 55(2019) 14637-14640.

    4. [4]

      (a) S. Chen, Y. Li, P. Ni, H. Huang, G.J. Deng, Org. Lett. 18(2016) 5384-5387;
      (b) H. Hu, X. Chen, K. Sun, et al., Org. Chem. Front. 5(2018) 2925-2929;
      (c) F.L. Zeng, K. Sun, X.L. Chen, et al., Adv. Synth. Catal. 361(2019) 5176-5181;
      (d) J. Lin, R.J. Song, M. Hu, J.H. Li, Chem. Rec. 19(2019) 440-451;
      (e) X.C. Liu, K. Sun, Q.Y. Lv, et al., New J. Chem. 43(2019) 12221-12224;
      (f) L. Zou, P. Li, B. Wang, L. Wang, Green Chem. 21(2019) 3362-3369.

    5. [5]

      (a) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29(2018) 907-910;
      (b) X. Gong, G. Li, Z. Gan, et al., Asian J. Org. Chem. 8(2019) 1472-1478;
      (c) S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. 30(2019) 2287-2290;
      (d) G. Li, Q. Yan, X. Gong, X. Dou, D. Yang, ACS Sustain. Chem. Eng. 7(2019) 14009-14015;
      (e) Z. Wang, W.M. He, Chin. J. Org. Chem. 39(2019) 3594-3595;
      (f) L. Wang, Y. Zhang, M. Zhang, et al., Tetrahedron Lett. 60(2019) 1845-1848;
      (g) W. Huang, J. Xu, C. Liu, Z. Chen, Y. Gu, J. Org. Chem. 84(2019) 2941-2950;
      (h) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. 31(2020) 67-70;
      (i)M. Li, X.Dong, N. Zhang, F. Jérôme, Y.Gu, GreenChem. 21(2019) 4650-4655;
      (j) Y. Wu, C. Pi, X. Cui, Y. Wu, Org. Lett. 22(2020) 361-364.

    6. [6]

      (a) Z. Zhang, W. Zhang, J. Li, et al., J. Org. Chem. 79(2014) 11226-11233;
      (b) A.H. Zhou, Q. He, C. Shu, et al., Chem. Sci. 6(2015) 1265-1271;
      (c) C. Shu, Y.H. Wang, C.H. Shen, et al., Org. Lett. 18(2016) 3254-3257;
      (d) Z.W. Gilbert, R.J. Hue, I.A. Tonks, Nat. Chem. 8(2016) 63-68;
      (e) T. Li, H. Yan, X. Li, C. Wang, B. Wan, J. Org. Chem. 81(2016) 12031-12037;
      (f) B.Y. Cheng, Y.N. Wang, T.R. Li, L.Q. Lu, W.J. Xiao, J. Org. Chem. 82(2017) 12134-12140;
      (g) Y. Liu, X. Yi, X. Luo, C. Xi, J. Org. Chem. 82(2017) 11391-11398;
      (h) A. Kumar, N. Tadigoppula Ramanand, Green Chem. 19(2017) 5385-5389;
      (i) Z. Tian, J. Xu, B. Liu, Q. Tan, B. Xu, Org. Lett. 20(2018) 2603-2606;
      (j) A. Kondoh, A. Iino, S. Ishikawa, T. Aoki, M. Terada, Chem. Eur. J. 24(2018) 15246-15253;
      (k) L. Li, Q. Chen, X. Xiong, et al., Chin. Chem. Lett. 29(2018) 1893-1896;
      (l) X.Q. Zhu, H. Yuan, Q. Sun, et al., Green Chem. 20(2018) 4287-4291;
      (m) G. Cheng, W. Lv, L. Xue, Green Chem. 20(2018) 4414-4417;
      (n) D. Chen, Y. Shan, J. Li, et al., Org. Lett. 21(2019) 4044-4048;
      (o) J. Cen, Y. Wu, J. Li, et al., Org. Lett. 21(2019) 2090-2094;
      (p) L.Y. Xie, S. Peng, T.G. Fan, et al., Sci. China Chem. 62(2019) 460-464;
      (q) W. Huang, S. Chen, Z. Chen, et al., J. Org. Chem. 84(2019) 5655-5666;
      (r) T. Schitter, S. Stammwitz, P.G. Jones, D.B. Werz, Org. Lett. 21(2019) 9415-9419;
      (s) Q.W. Gui, X. He, W. Wang, et al., Green Chem. 22(2020) 118-122;
      (t) G. Vengatesh, M. Sundaravadivelu, S. Muthusubramanian, J. Mol. Struct. 1199(2020) 126980;
      (u) L. Qi, R. Li, X. Yao, et al., J. Org. Chem. 85(2020) 1097-1108.

    7. [7]

      (a) J. Jiang, H. Huang, G.J. Deng, Green Chem. 21(2019) 986-990;
      (b) S. Liu, K. Chen, W.J. Hao, et al., J. Org. Chem. 84(2019) 1964-1971;
      (c)Z.Xu, G.J.Deng, F.Zhang, H.Chen, H.Huang, Org.Lett.21(2019)8630-8634;
      (d) H. Huang, Z. Qu, X. Ji, G.J. Deng, Org. Chem. Front. 6(2019) 1146-1150;
      (e) X.Y. Qin, L. He, J. Li, et al., Chem. Commun. 55(2019) 3227-3230;
      (f) S. Ye, X. Li, W. Xie, J. Wu, Asian J. Org. Chem. 8(2019) 893-898;
      (g) G.H. Li, D.Q. Dong, Q. Deng, S.Q. Yan, Z.L. Wang, Synthesis 51(2019) 3313-3319;
      (h) J. Xu, W. Huang, R. Bai, et al., Green Chem. 21(2019) 2061-2069.

    8. [8]

      X.Q. Mou, Z.L. Xu, L. Xu, et al., Org. Lett. 18(2016) 4032-4035.  doi: 10.1021/acs.orglett.6b01883

    9. [9]

      (a) W.H. Bao, Z. Wang, X. Tang, et al., Chin. Chem. Lett. 30(2019) 2259-2262;
      (b) K.J. Liu, T.Y. Zeng, J.L. Zeng, et al., Chin. Chem. Lett. 30(2019) 2304-2308;
      (c) L.H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30(2019) 1237-1240;
      (d) W.M. He, Y.W. Lin, D.H. Yu, Sci. China Chem. 63(2020) 291-293;
      (e) Z. Cao, Q. Zhu, Y.W. Lin, W.M. He, Chin. Chem. Lett. 30(2019) 2132-2138.

    10. [10]

      (a) Z. Shi, L. Wang, X. Cui, Chin. J. Org. Chem. 39(2017) 1596-1612;
      (b) H. Li, P. Zhou, F. Xie, et al., J. Org. Chem. 83(2018) 13335-13343;
      (c) S.H. Hao, L.X. Li, D.Q. Dong, Z.L. Wang, Chin. J. Catal. 38(2017) 1664-1667;
      (d) J. Ren, X. Yan, X. Cui, et al., Green Chem. 22(2020) 265-269;
      (e) S. Du, C. Pi, T. Wan, Y. Wu, X. Cui, Adv. Synth. Catal. 361(2019) 1766-1770;
      (f) P. Bao, L. Wang, H. Yue, et al., J. Org. Chem. 84(2019) 2976-2983.

    11. [11]

      (a) J.Y. Chen, Y.W. Lin, W.M. He, Chin. Chem. Lett. (2020), doi: http://dx.doi.org/10.1016/j.cclet.2020.03.034;
      (b) W.B. He, L.Q. Gao, X.J. Chen, et al., Chin. Chem. Lett. 31(2020) 1895-1898;
      (c) S. Peng, Y.W. Lin, W.M. He, Chin. J. Org. Chem. 40(2020) 541-542;
      (d) F.H. Qin, X.J. Huang, Y. Liu, et al., Chin. Chem. Lett. (2020), doi: http://dx.doi.org/10.1016/j.cclet.2020.04.042;
      (e) J.Y. Chen, H.Y. Wu, Q.W. Gui, et al., Org. Lett. 22(2020) 2206-2209.

    12. [12]

      X.Q. Mou, L. Xu, S.H. Wang, C. Yang, Tetrahedron Lett. 56(2015) 2820-2822.  doi: 10.1016/j.tetlet.2015.04.056

  • 加载中
    1. [1]

      Liyang Qin Luna Wu Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545

    2. [2]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    3. [3]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    4. [4]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    5. [5]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    6. [6]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    7. [7]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    8. [8]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    9. [9]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    10. [10]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    11. [11]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    12. [12]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    18. [18]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    19. [19]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

Metrics
  • PDF Downloads(10)
  • Abstract views(1173)
  • HTML views(222)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return