Citation: Zhenyu Yao, Xing Lin, Remi Chauvin, Lianhui Wang, Emmanuel Gras, Xiuling Cui. Phosphine-phosphonium ylides as ligands in palladium-catalysed C2-H arylation of benzoxazoles[J]. Chinese Chemical Letters, ;2020, 31(12): 3250-3254. doi: 10.1016/j.cclet.2020.04.008 shu

Phosphine-phosphonium ylides as ligands in palladium-catalysed C2-H arylation of benzoxazoles

    *Corresponding author.
    **Laboratory of Coordination Chemistry (LCC), CNRS & Universite' de Toulouse (UPS, INP), Toulouse 31077 Cedex 4, France
    E-mail addresses: chauvin@lcc-toulouse.fr (R. Chauvin), cuixl@hqu.edu.cn (X. Cui).
  • Received Date: 5 March 2020
    Revised Date: 29 March 2020
    Accepted Date: 6 April 2020
    Available Online: 18 April 2020

Figures(3)

  • As balanced electron-rich P, C-chelating ligands, phosphine-phosphonium-ylides are considered for their ability to in situ promote palladium-catalysed direct C(sp2)-H arylation. Using methyl phosphonium salts of 2, 2'-bis(diphenylphosphino)-1, 1'-binaphtyl ("methyl-BINAPIUM") as ylide precursors under optimized reaction conditions, arylation of benzoxazole was found to proceed in moderate to high yield to give functional 2-aryl benzoxazoles. A strong anion effect of the non-salt free ylide was evidenced (TfO- > I- > PF6- ≈ salt-free). This first example of phosphonium ylides as ligands in catalytic C-H activation extends the prospect of their general implementation in homogeneous transition metal catalysis.
  • 加载中
    1. [1]

      (a) R.A. Hughes, C.J. Moody, Angew. Chem. Int. Ed. 46(2007) 7930-7954;
      (b) I. Osaka, R.D. McCullough, Acc. Chem. Res. 41(2008) 1202-1241.

    2. [2]

      (a) C.A. Tolman, Chem. Rev. 77(1977) 313-348;
      (b) A.F. Littke, G.C. Fu, Angew. Chem. Int. Ed. 37(1998) 3387-3388.

    3. [3]

      (a) M. Scholl, S. Ding, C.W. Lee, et al., Org. Lett. 1(1999) 953-956;
      (b) W.A. Herrmann, Angew. Chem. Int. Ed. 41(2002) 1290-1309;
      (c) M.C. Jahnke, F.E. Hahn, Top. Organomet. Chem. 30(2010) 95-129.

    4. [4]

      J. Pedroni, N. Cramer, Chem. Commun. 51(2015) 17647-17657.  doi: 10.1039/C5CC07929B

    5. [5]

      (a) K. Xiao, D. Lin, M. Miura, et al., J. Am. Chem. Soc. 136(2014) 8138-8142;
      (b) P. Shen, L. Hu, Q. Shao, et al., J. Am. Chem. Soc. 140(2018) 6545-6549;
      (c) Q. Shao, J. He, Q. Wu, et al., ACS Catal. 7(2017) 7777-7782;
      (d) C. Pi, Y. Li, X.L. Cui, et al., Chem. Sci. 4(2013) 2675-2679;
      (e) D. Gao, Q. Gu, S.L. You, J. Am. Chem. Soc. 138(2016) 2544-2547;
      (f) J. Wu, X.L. Cui, L. Chen, et al., J. Am. Chem. Soc. 131(2009) 13888-13889.

    6. [6]

      Y. Li, X. Yu, Y. Wang, et al., Organometallics 37(2018) 979-988.  doi: 10.1021/acs.organomet.8b00005

    7. [7]

      (a) Z. Yang, X. Lin, L.H. Wang, et al., Org. Chem. Front. 4(2017) 2179-2183;
      (b) C.S. Kuai, L.H. Wang, H. Cui, et al., ACS Catal. 6(2015) 186-190;
      (c) L.H. Wang, D. Xiong, L.H. Jie, et al., Chin. Chem. Lett. 29(2018) 907-910;
      (d) T. Wan, S.D. Du, C. Pi, et al., ChemCatChem 11(2019) 3791-3796;
      (e) X. Mi, Y. Kong, J. Zhang, et al., Chin. Chem. Lett. 30(2019) 2295-2298;
      (f) Y. He, C. Pi, Y. Wu, et al., Chin. Chem. Lett. 31(2020) 396-400.

    8. [8]

      (a) H. Schmidbaur, Angew. Chem. Int. Ed. 22(1983) 907-927;
      (b) Y. Canac, C. Lepetit, M. Abdalilah, et al., J. Am. Chem. Soc.130(2008) 8406-8413;
      (c) E.P. Urriolabeitia, Top. Organomet. Chem. 130(2010) 15-48;
      (d) T. Scherpf, R. Wirth, K.S. Feichtner, et al., Angew. Chem. Int. Ed. 54(2015) 8542-8546;
      (e) C. Lepetit, V. Maraval, Y. Canac, et al., Coord. Chem. Rev. 308(2016) 59-75;
      (f) E. Serrano, T. Soler, E.P. Urriolabeitia, Eur. J. Inorg. Chem. 2017(2017) 2220-2230;
      (g) L.T. Scharf, V.H. Gessner, Inorg. Chem. 56(2017) 8599-8607;
      (h) V.H. Gessner, Struct. Bond. 177(2018) 117-157.

    9. [9]

      (a) R. Zurawinski, B. Donnadieu, M. Mikolajczyk, et al., J. Organomet. Chem. 689(2004) 380-386;
      (b) Y. Canac, C. Duhayon, R. Chauvin, Angew. Chem. Int. Ed. 46(2007) 6313-6315.

    10. [10]

      R. Zurawinski, R. Donnadieu, M. Mikolajczyk, et al., Organometallics 22(2003) 4810-4817.  doi: 10.1021/om030343g

    11. [11]

      L. Arnedo, R. Chauvin, A. Poater, Catalysts 7(2017) 1-12.

    12. [12]

      (a) P. Leglaye, B. Donnadieu, J.J. Brunet, R. Chauvin, Tetrahedron Lett. 39(1998) 9179-9182;
      (b) M. Soleilhavoup, L. Viau, G. Commenges, et al., Eur. J. Inorg. Chem. (2003) 207-212.

    13. [13]

      (a) L. Viau, C. Lepetit, G. Commenges, et al., Organometallics 20(2001) 808-810;
      (b) C. Canal, C. Lepetit, M. Soleilhavoup, et al., Affinidad 61(2004) 298-303.

    14. [14]

      (a) T. Ohta, T. Fujii, N. Kurahashi, et al., Sci. Eng. Rev. Doshisha Univ. 39(1998) 133-141;
      (b) T. Ohta, H. Sasayama, O. Nakajima, et al., TetrahedronAsymmetry 14(2003) 537-542.

    15. [15]

      (a) T. Scherpf, R. Wirth, S. Molitor, et al., Angew. Chem. Int. Ed. 54(2015) 8542-8546;
      (b) L.T. Scharf, V.H. Gessner, Inorg. Chem. 56(2017) 8599-8607.

    16. [16]

      (a) R.F. Heck, J. Am. Chem. Soc. 90(1968) 5518-5526;
      (b) T. Mizoroki, K. Mori, A. Ozaki, Bull. Chem. Soc. Jpn. 44(1971) 581-583;
      (c) A. Jutand, Introduction, in: M. Oestreich (Ed.), The Mizoroki-Heck Reaction, John Wiley & Sons, 2009, pp. 1-50;
      (d) Y.P. Wang, H.M. Lee, J. Organomet. Chem. 791(2015) 90-98.

    17. [17]

      (a) J.C. Lewis, J. Wu, R.G. Bergman, et al., Angew. Chem. Int. Ed. 45(2006) 1589-1591;
      (b) H.Q. Do, O. Daugulis, J. Am. Chem. Soc. 129(2007) 12404-12405;
      (c) J.C. Lewis, A.M. Berman, R.G. Bergman, et al., J. Am. Chem. Soc. 130(2008) 2493-2500;
      (d) D. Zhao, W. Wang, F. Yang, et al., Angew. Chem. Int. Ed. 48(2009) 3296-3300.

    18. [18]

      C.S. Demmer, L. Bunch, J. Med. Chem. 97(2015) 778-785.  doi: 10.1016/j.ejmech.2014.11.064

    19. [19]

      S. Abdeen, T. Kunkle, N. Salim, et al., J. Med. Chem. 61(2018) 7345-7357.  doi: 10.1021/acs.jmedchem.8b00989

    20. [20]

      C.J. Smith, A. Ali, L. Chen, et al., Bioorg. Med. Chem. Lett. 20(2010) 346-349.  doi: 10.1016/j.bmcl.2009.10.099

    21. [21]

      R. Duroux, L. Agouridas, N. Renault, et al., Eur. J. Med. Chem. 144(2018) 151-163.  doi: 10.1016/j.ejmech.2017.12.007

    22. [22]

      S.M. Johnson, S. Connelly, I.A. Wilson, et al., J. Med. Chem. 51(2008) 260-270.  doi: 10.1021/jm0708735

    23. [23]

      X. Wang, M. Cui, J. Jia, et al., Eur. J. Med. Chem. 89(2015) 331-339.  doi: 10.1016/j.ejmech.2014.10.046

    24. [24]

      C. Carayon, S. Fery-Forgues, Photochem. Photobiol. Sci. 16(2017) 1020-1035 and references therein.  doi: 10.1039/C7PP00112F

    25. [25]

      A. Poveda, I. Alonso, M.A. Fernandez-Ibanez, Chem. Sci. 5(2014) 3873-3882.  doi: 10.1039/C4SC00848K

    26. [26]

      P.A. Byrne, D.G. Gilheany, J. Am. Chem. Soc. 134(2012) 9225-9239 and references therein.  doi: 10.1021/ja300943z

    27. [27]

      (a) T. Hayashida, H. Kondo, J.I. Terasawa, et al., J. Organomet. Chem. 692(2007) 382-394;
      (b) V.J. Argyle, L.M. Woods, M. Roxburgh, et al., CrystEngComm 15(2013) 120-134.

    28. [28]

      (a) H.M. Senn, T. Ziegler, Organometallics 23(2004) 2980-2988;
      (b)L.J. Gooßen, D. Koley, H.L.Hermann, etal., Organometallics 24(2005)2398-2410.

    29. [29]

      R. Chauvin, Eur. J. Inorg. Chem. 2000(2000) 577-591.

    30. [30]

      X. Ren, P. Wen, X. Shi, et al., Org. Lett. 15(2013) 5194-5197.  doi: 10.1021/ol402262c

    31. [31]

      A.N. Cammidge, K.V.L. Crepy, Chem. Commun. 36(2000) 1723-1724.

  • 加载中
    1. [1]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    2. [2]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    3. [3]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    6. [6]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    7. [7]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    8. [8]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    9. [9]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    10. [10]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    11. [11]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    12. [12]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    13. [13]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    14. [14]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    15. [15]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    16. [16]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    17. [17]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    18. [18]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    19. [19]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    20. [20]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

Metrics
  • PDF Downloads(6)
  • Abstract views(1073)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return