Citation: Yadong Feng, Zhengping Wu, Ting Chen, Qi Fu, Qihua You, Jinhai Shen, Xiuling Cui. Palladium-catalyzed oxidative homocoupling of 2-arylquinazolinones[J]. Chinese Chemical Letters, ;2020, 31(12): 3263-3266. doi: 10.1016/j.cclet.2020.03.080 shu

Palladium-catalyzed oxidative homocoupling of 2-arylquinazolinones

    * Corresponding authors at: College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China.
    E-mail addresses: fengyd@hxxy.edu.cn (Y. Feng), cuixl@hqu.edu.cn (X. Cui).
  • Received Date: 8 March 2020
    Revised Date: 20 March 2020
    Accepted Date: 31 March 2020
    Available Online: 15 April 2020

Figures(5)

  • Pd-catalyzed oxidative homocoupling of 2-arylquinazolinones was successfully developed for the direct construction of biaryls via C-H bond activation. New well-defined structure that possessed two quinazolinone units was obtained with high efficiency and atomic economy. The protocols offer an efficient approach to the synthetically useful and functionalized biaryls in good yields using quinazolinone as a directing group.
  • 加载中
    1. [1]

      (a) J. Hassan, M. Sevignon, C. Gozzi, et al., Chem. Rev. 102(2002) 1359-1470;
      (b) C.S.V. Yeung, M. Dong, Chem. Rev. 111(2011) 1215-129;
      (c) K. Hirano, M. Miura, Chem. Commun. 48(2012) 10704-10714;
      (d) S.A. Girard, T. Knauber, C.J. Li, Angew. Chem. Int. Ed. 126(2014) 76-103;
      (e) Y. Wu, J. Wang, F. Mao, et al., Chem. Asian J. 9(2014) 26-47.

    2. [2]

      (a) C.J. Li, Z. Li, Pure Appl. Chem. 78(2006) 935-945;
      (b) M. Matsushita, K. Kamata, K. Yamaguchi, et al., J. Am. Chem. Soc.127(2005) 6632-6640;
      (c) X.L. Li, J.B. Hewgley, C.A. Mulrooney, et al., J. Org. Chem. 68(2003) 5500-5511;
      (d) L. Grigorjeva, O. Daugulis, Org. Lett. 17(2015) 1204-1207;
      (e) A.J. Paterson, S.St. John-Campbell, M.F. Mahon, et al., Chem. Commun. 51(2015) 12807-12810;
      (f) K. Masui, H. Ikegami, A. Mori, J. Am. Chem. Soc. 126(2004) 5074-5075;
      (g) M. Takahashi, K. Masui, H. Sekiguchi, et al., J. Am. Chem. Soc. 128(2006) 10930-10933;
      (h) R. Li, L. Jiang, W. Lu, Organometallics 25(2006) 5973-5975;
      (i) K. Fagnou, Science 316(2007) 1172-1175;
      (j) T.A. Dwight, N.R. Rue, D. Charyk, et al., Org. Lett. 9(2007) 3137-3139;
      (k) X. Qin, D. Sun, Q. You, et al., Org. Lett. 17(2015) 1762-1765;
      (l) Y. Yang, J. Lan, J. You, Chem. Rev. 117(2017) 8787-8863;
      (m) J. Wencel-Delord, C. Nimphius, H. Wang, et al., Angew. Chem. Int. Ed. 51(2012) 13001-13005;
      (o) X. Han, P. Lin, Q. Li, Chin. Chem. Lett. 30(2019) 1495-1502;
      (p) S. Yuan, S. Wang, M. Zhao, et al., Chin. Chem. Lett. 31(2020) 349-352;
      (q) Q. Huang, L. Zhu, D. Yi, X. Zhao, W. Wei, Chin. Chem. Lett. 31(2020) 373-376;
      (r) X. Zhang, S. Dong, Q. Ding, X. Fan, G. Zhang, Chin. Chem. Lett. 30(2019) 375-378.

    3. [3]

      R. van Helden, G. Verberg, Recl. Trav. Chim. Pays-Bas 84(1965) 1263-1273.

    4. [4]

      R. Li, L. Jiang, W. Lu, Organometallics 25(2006) 5973-5975.  doi: 10.1021/om060889d

    5. [5]

      J.B. Xia, X.Q. Wang, S.L. You, J. Org. Chem. 74(2009) 456-458.  doi: 10.1021/jo802227u

    6. [6]

      Y. Liu, X. Wang, X. Cai, et al., ChemCatChem 8(2016) 448-454.  doi: 10.1002/cctc.201500951

    7. [7]

      Y. Guo, K.K. Yu, L.H. Xing, et al., Adv. Synth. Catal. 357(2017) 410-418.

    8. [8]

      (a) A.K. Nanda, S. Ganguli, R. Chakraborty, Molecules 12(2007) 2413-2426;
      (b) J.H. Chan, J.S. Hong, L.F. Kuyper, et al., J. Med. Chem. 38(1995) 3608-3616;
      (c) H.Kikuchi, K. Yamamoto, S. Horoiwa, etal., J.Med. Chem.49(2006)4698-4706;
      (d) Y. Takase, T. Saeki, N. Watanabe, et al., J. Med. Chem. 37(1994) 2106-2111;
      (e) M. Dupuy, F. Pinguet, O. Chavignon, et al., Chem. Pharm. Bull. 49(2001) 1061-1065;
      (f) P.M. Chandrika, T. Yakaiah, A.R.R. Rao, et al., Eur. J. Med. Chem. 43(2008) 846-852;
      (g) M.H. Yen, J.R. Sheu, I.H. Peng, et al., J. Pharm. Pharmacol. 48(1996) 90-95;
      (h) J. Kunes, J. Bazant, M. Pour, et al., Farmaco 55(2000) 725-729;
      (i) K. Waisser, J. Gregor, H. Dostal, et al., Farmaco 56(2001) 803-807;
      (j) A. Archana, V.K. Shrivastava, R. Chandra, et al., Indian J. Chem. 41B (2002) 2371-2375.

    9. [9]

      S.A. Shiba, A.A. El-Khamry, M.E. Shaban, et al., Pharmazie 52(1997) 189-194.

    10. [10]

      (a) Y. Feng, N. Tian, Y. Li, et al., Org. Lett. 19(2017) 1658-1661;
      (b) Y. Feng, Y. Li, Y. Yu, L. Wang, X. Cui, RSC Adv. 8(2018) 8450-8454;
      (c) Y. Feng, Z. Zhang, Q. Fu, et al., Chin. Chem. Lett. 31(2020) 58-60;
      (d) Y. Feng, Y. Liu, Q. Fu, et al., Chin. Chem. Lett. 31(2020) 733-736;
      (e) W. Fu, L. Wang, Z. Shi, et al., Chem. Commun. 56(2020) 560-563;
      (f) Y. Wu, C. Pi, X. Cui, et al., Org. Lett. 22(2020) 361-364;
      (g) J. Ren, X. Yan, X. Cui, et al., Green Chem. 22(2020) 265-269;
      (h) X. Mi, Y. Kong, J. Zhang, et al., Chin. Chem. Lett. 30(2019) 2295-2298;
      (i) Y. He, C. Pi, Y. Wu, et al., Chin. Chem. Lett. 31(2020) 396-400.

    11. [11]

      (a) Y. Li, Y. Feng, L. Xu, et al., Org. Lett. 18(2016) 4924-4927;
      (b) Y. Li, M. Gao, L. Wang, et al., Org. Biomol. Chem. 14(2016) 8428-8432;
      (c) M. Gao, Y. Li, L. Xie, et al., Chem. Commun. 52(2016) 2846-2849;
      (d) M. Wei, L. Wang, X. Cui, Chin. Chem. Lett. 26(2015) 1336-1340;
      (e) L. Wang, Z. Yang, M. Yang, et al., Org. Biomol. Chem. 15(2017) 8302-8307.

    12. [12]

      (a) K.L. Hull, E.L. Lanni, M.S. Sanford, J. Am. Chem. Soc. 128(2006) 14047-14049;
      (b) S.R. Whitfield, M.S. Sanford, J. Am. Chem. Soc. 129(2007) 15142-15143;
      (c) J.M. Racowski, A.R. Dick, M.S. Sanford, J. Am. Chem. Soc. 131(2009) 10974-10983;
      (d) H. Batchu, S. Bhattacharyya, R. Kant, et al., J. Org. Chem. 80(2015) 7360-7374;
      (e) L. Hull, S. Sanford, J. Am. Chem. Soc. 131(2009) 9651-9653.

  • 加载中
    1. [1]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    2. [2]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    3. [3]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    4. [4]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    5. [5]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    6. [6]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    7. [7]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    8. [8]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    9. [9]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    10. [10]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    11. [11]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    12. [12]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    13. [13]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    14. [14]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    15. [15]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    16. [16]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    17. [17]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    18. [18]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    19. [19]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    20. [20]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

Metrics
  • PDF Downloads(6)
  • Abstract views(1133)
  • HTML views(232)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return