Citation: Rui-Ying Zhang, Meng-Meng Xu, Hai-Yan Li, Xiao-Ping Xu, Shun-Jun Ji. Cascade reaction involving intramolecular oxygen-migration: Efficient synthesis of 3-allylidene-indolin-2-one compounds under metal-free conditions[J]. Chinese Chemical Letters, ;2021, 32(1): 433-436. doi: 10.1016/j.cclet.2020.03.070 shu

Cascade reaction involving intramolecular oxygen-migration: Efficient synthesis of 3-allylidene-indolin-2-one compounds under metal-free conditions

    * Corresponding authors.
    E-mail addresses: xuxp@suda.edu.cn (X.-P. Xu), shunjun@suda.edu.cn (S.-J. Ji).
  • Received Date: 8 February 2020
    Revised Date: 18 March 2020
    Accepted Date: 27 March 2020
    Available Online: 11 April 2020

Figures(8)

  • An efficient synthesis of 3-(diarylallylidene)oxindoles from 3-(1H-indol-3-yl)-1, 1-diarylpropan-1-ol under metal-free conditions is described. NBS serves as a critical medium leading to a facile oxygen-migration in the transformation. The protocol has advantages of high efficiency, simple opreation, mild reaction conditions, good atom-economy, wide substrate scope and good yields of products. A detailed mechanism is proposed after careful investigation.
  • 加载中
    1. [1]

      (a) C. Marti, E.M. Carreira, Eur. J. Org. Chem. 68 (2003) 2209-2215;
      (b) A.B. Dounay, L.E. Overman, Chem. Rev. 103 (2003) 2945-2963;
      (c) C.V. Galliford, K.A. Scheidt, Angew. Chem. Int. Ed. 119 (2007) 8902-8912;
      (d) V. Chris, Galliford, K.A. Scheidt, Angew. Chem. Int. Ed. 46 (2007) 8748-8758;
      (e) K.K. Wang, W. Du, J. Zhu, Y.C. Chen, Chin. Chem. Lett. 28 (2017) 512-516.

    2. [2]

      (a) L. Sun, C. Liang, S. Shirazian, et al., J. Med. Chem. 46 (2003) 1116-1119;
      (b) L. Sun, N. Tran, C. Liang, et al., J. Med. Chem. 43 (2000) 2655-2663;
      (c) S. Lin, Z.Q. Yang, B.H.B. Kwok, et al., J. Am. Chem. Soc. 126 (2004) 6347-6355.

    3. [3]

      (a) L. Sun, N. Tran, F. Tang, et al., J. Med. Chem. 41 (1998) 2588-2603;
      (b) V.R. Solomon, C. Hu, H. Lee, Bioorg. Med. Chem. 17 (2009) 7585-7592.

    4. [4]

      L. F. Yu, Y.Y. Li, M.B. Su, et al. , ACS Med. Chem. Lett. 4 (2013) 475-480.  doi: 10.1021/ml400028q

    5. [5]

      R. P. Robinson, L.A. Reiter, W.E. Barth, et al. , J. Med. Chem. 39 (1996) 10-18.  doi: 10.1021/jm950575k

    6. [6]

      A. Pal, A. Ganguly, A. Ghosh, M. Yousuf, B. Rathore, R. Banerjee, S. Adhikari, ChemMedChem 9 (2014) 727-732.  doi: 10.1002/cmdc.201400003

    7. [7]

      K. H. Kim, H.R. Moon, J. Lee, J.N. Kima, Adv. Synth. Catal. 357 (2015) 701-708.  doi: 10.1002/adsc.201400965

    8. [8]

      Y. Yu, K.J. Shin, J.H. Seo, J. Org. Chem. 82 (2017) 1864-1871.  doi: 10.1021/acs.joc.6b02909

    9. [9]

      R. R. Goehring, Y.P. Sachdeva, J.S. Pisipati, M.C. Sleevi, J.F. Wolfe, J. Am. Chem. Soc. 107 (1985) 435-443.  doi: 10.1021/ja00288a027

    10. [10]

      (a) N.K. Sasaki, T. Sakurai, Tetrahedron 70 (2014) 9668-9675;
      (b) L. Chen, Z.J. Wu, L. Peng, et al., Chin. J. Chem. 32 (2014) 844-852;
      (c) M.A. Loreto, A. Migliorini, P.A. Tardella, A. Gambacorta, Eur. J. Org. Chem. 14 (2007) 2365-2371.

    11. [11]

      (a) R. Yanada, S. Obika, T. Inokuma, et al., J. Org. Chem. 70 (2005) 6972-6975;
      (b) T. Miura, T. Toyoshima, Y. Takahashi, M. Murakami, Org. Lett. 10 (2008) 4887-4889;
      (c) W.S. Cheung, R.J. Patch, M.R. Player, J. Org. Chem. 70 (2005) 3741-3744.

    12. [12]

      S. Muthusamy, D. Azhagan, Tetrahedron Lett. 52 (2011) 6732-6735.  doi: 10.1016/j.tetlet.2011.10.004

    13. [13]

      (a) L. Han, C. Liu, W. Zhang, X.X. Shi, S.L. You, Chem. Commun. 50 (2014) 1231-1233;
      (b) C. Liu, W. Zhang, L.X. Dai, S.L. You, Org. Lett. 14 (2012) 4525-4527;
      (c) Y.Z. Cheng, Q.R. Zhao, X. Zhang, S.L. You, Angew. Chem. Int. Ed. 58 (2019) 18069-18074.

    14. [14]

      (a) O. Lozano, G. Blessley, T.M. Campo, et al., Angew. Chem. Int. Ed. 50 (2011) 8105-8109;
      (b) H. Yin, T. Wang, N. Jiao, Org. Lett. 16 (2014) 2302-2305;
      (c) J.J. Guo, S.Y. Chen, J.Y. Liu, et al., Eur. J. Org. Chem. 32 (2017) 4773-4777;
      (d) X. Deng, K.J. Liang, X.G. Tong, et al., Org. Lett. 16 (2014) 3276-3279;
      (e) P.P. Zhang, W.S. Sun, G.F. Li, L. Hong, R. Wang, Chem. Commun. 51 (2015) 12293-12296;
      (f) X.F. Chen, J.B. Fan, G.Y. Zeng, et al., J. Org. Chem. 83 (2018) 8322-8330.

    15. [15]

      (a) D. Ryzhakov, M. Jarret, R. Guillot, C. Kouklovsky, G. Vincent, Org. Lett. 19 (2017) 6336-6339;
      (b) D. Ryzhakov, M. Jarret, J.P. Baltaze, et al., Org. Lett. 21 (2019) 4986-4990;
      (c) H.F. Wang, D. Liu, H.Y. Chen, J. Li, D.Z. Wang, Tetrahedron 71 (2015) 7073-7076;
      (d) J. Li, M. Liu, Q. Li, H. Tian, Y.A. Shi, Org. Biomol. Chem. 12 (2014) 9769-9772.

    16. [16]

      (a) Y. Zi, Z.J. Cai, S.Y. Wang, S.J. Ji, Org. Lett. 16 (2014) 3094-3097;
      (b) Z.J. Cai, S.Y. Wang, S.J. Ji, Org. Lett. 15 (2013) 5226-5229;
      (c) X. Wang, S.Y. Wang, S.J. Ji, Org. Lett. 15 (2013) 1954-1957;
      (d) W.B. Cao, X.P. Xu, S.J. Ji, Org. Biomol. Chem. 15 (2017) 1651-1654;
      (e) X.Q. Chu, Y. Zi, H. Meng, X.P. Xu, S.J. Ji, Org. Biomol. Chem. 12 (2014) 4243-4251;
      (f) W.J. Hao, S.Y. Wang, S.J. Ji, ACS Catal. 3 (2013) 2501-2504;
      (g) W.B. Cao, X.Q. Chu, Y. Zhou, et al., Chem. Commun. 53 (2017) 6601-6604;
      (h) M.M. Xu, W.B. Cao, R. Ding, et al., Org. Lett. 21 (2019) 6217-6220;
      (i) L.L. Zhang, W.B. Cao, X.P. Xu, S.J. Ji, Org. Chem. Front. 6 (2019) 1787-1795;
      (j) Y. Zhou, X.P. Xu, S.J. Ji, Org. Lett. 21 (2019) 2039-2042.

    17. [17]

      (a) P.P. Huang, X.J. Peng, D. Hu, et al., Org. Biomol. Chem. 15 (2017) 9622-9629;
      (b) Y.R. Li, L.Y. Zhang, H.Y. Yuan, F.S. Liang, J.P. Zhang, Synlett 26 (2015) 116-122.

    18. [18]

      (a) Y. Jiang, S.W. Yu, Y. Yang, et al., Org. Biomol. Chem. 16 (2018) 9003-9010;
      (b) R.B. Ding, Y. Li, C. Tao, B. Cheng, H.B. Zhai, Org. Lett. 17 (2015) 3994-3997.

    19. [19]

      Z. Wang, Z.Z. Yu, Y. Yao, et al. , Chin. Chem. Lett. 30 (2019) 1541-1544.  doi: 10.1016/j.cclet.2019.07.001

  • 加载中
    1. [1]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    2. [2]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    3. [3]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    4. [4]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    5. [5]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    6. [6]

      Hao GuRui LiQiuying LiSheng LuYahui ChenXiaoning YangHuili MaZhijun XuXiaoqiang Chen . Multi-dimensional hydrogen bonds regulated emissions of single-molecule system enabling surficial hydrophobicity/hydrophilicity mapping. Chinese Chemical Letters, 2025, 36(5): 110116-. doi: 10.1016/j.cclet.2024.110116

    7. [7]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    8. [8]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    9. [9]

      Xuling PanWei CaiYou Huang . Recent advances in phosphine-mediated sequential annulations. Chinese Chemical Letters, 2025, 36(5): 110628-. doi: 10.1016/j.cclet.2024.110628

    10. [10]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    11. [11]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    12. [12]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    13. [13]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    14. [14]

      Wen XiaoFazhan WangYangzhuo GuXi HeNa FanQian ZhengShugang QinZhongshan HeYuquan WeiXiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755

    15. [15]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    16. [16]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    17. [17]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    18. [18]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    19. [19]

      Wenhao WangSiyuan PengZhengwei HuangXin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134

    20. [20]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

Metrics
  • PDF Downloads(7)
  • Abstract views(1086)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return