Citation: Jie Zhou, Manna Huang, Xinhai Zhu, Yiqian Wan. One-pot synthesis of dual-state emission (DSE) luminogens containing the V-shape furo[2, 3-b]furan scaffold[J]. Chinese Chemical Letters, ;2021, 32(1): 445-448. doi: 10.1016/j.cclet.2020.02.038 shu

One-pot synthesis of dual-state emission (DSE) luminogens containing the V-shape furo[2, 3-b]furan scaffold

    * Corresponding authors.
    E-mail addresses: huangmn25@mail.sysu.edu.cn (M. Huang), ceswyq@mail.sysu.edu.cn (Y. Wan).
    1 This author now is working in Hengyang Normal University.
  • Received Date: 8 January 2020
    Revised Date: 11 February 2020
    Accepted Date: 20 February 2020
    Available Online: 21 February 2020

Figures(4)

  • To discover novel fluorophores of solution and solid dual-state emission (DSE) materials, unique V-shape furo[2, 3-b]furans have been designed and synthesized by a one-pot method for the first time and their photoluminescent properties have been explored in benzene, THF, DMF and DMSO, as well as in the solid state. As the best example, 2, 5-bis(4-(9H-carbazol-9-yl)phenyl)-6a-amino-3a, 6a-dihydrofuro[2, 3-b] furan-3, 3a, 4-tricarbonitrile (3g) exhibited solution and solid DSE properties in THF, benzene, and in the solid state with quantum yields of 55%, 92%, and 45%, respectively.
  • 加载中
    1. [1]

      (a) B. valeur, M.N. Berberan-Santos, Molecular Fluorescence-Principles and Applications, 2nd ed., Wiley-VCH Verlag & Co., Weinheim, 2012;
      (b) A.S. Klymchenko, Acc. Chem. Res. 50 (2017) 366-375;
      (c) V.M. Alexander, P.L. Choyke, H. Kobayashi, Curr. Mol. Med. 13 (2013) 1568-1578;
      (d) S. Mizukami, H. Houjou, K. Sugaya, et al., Chem. Mater. 17 (2005) 50-56;
      (e) S.C.F. Kui, S.S.Y. Chui, C.M. Che, N. Zhu, J. Am. Chem. Soc. 128 (2006) 8297-8309.

    2. [2]

      (a) T. Qin, W. Wiedemair, S. Nau, et al., J. Am. Chem. Soc. 133 (2011) 1301-1303;
      (b) L. Duan, J. Qiao, Y. Sun, Y. Qiu, Adv. Mater. 23 (2011) 1137-1144;
      (c) A.C. Grimsdale, K.L. Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Chem. Rev. 109 (2009) 897-1091;
      (d) R.H. Friend, R.W. Gymer, A.B. Holmes, et al., Nature 397 (1999) 121-128;
      (e) T. Khanasa, N. Prachumrak, R. Rattanawan, et al., J. Org. Chem. 78 (2013) 6702-6713.

    3. [3]

      (a) J. Zhang, W. Chen, A.J. Rojas, et al., J. Am. Chem. Soc. 135 (2013) 16376-16379;
      (b) H. Lu, C. Zhang, G. Xia, et al., RSC Adv. 6 (2016) 96196-96201.

    4. [4]

      (a) T. Weil, T. Vosch, J. Hofkens, K. Peneva, K. Mullen, Angew. Chem. Int. Ed. 49 (2010) 9068-9093;
      (b) T. Mutai, T. Ohkawa, H. Shono, K. Araki, J. Mater. Chem. C 4 (2016) 3599-3606.

    5. [5]

      (a) Z. Zhang, B. Xu, J. Su, et al., Angew. Chem. Int. Ed. 50 (2011) 11654-11657;
      (b) B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park, J. Am. Chem. Soc. 124 (2002) 14410-14415;
      (c) J. Luo, Z. Xie, J.W. Y. Lam, et al., Chem. Commun. (2001) 1740-1741;
      (d) S.P. Anthony, ChemPlusChem 77 (2012) 518-531.

    6. [6]

      (a) X. You, G. Zhang, C. Zhan, Y. Wang, D. Zhang, ACS Symp. Ser. 1227 (2016) 93-127;
      (b) C. Zhan, X. You, G. Zhang, et al., Chem. Rec. 16 (2016) 2142-2160.

    7. [7]

      D. Mao, D. Ding, ACS Symp. Ser. 1227 (2016) 217-243.

    8. [8]

      (a) S.H. Bae, K.D. Seo, W.S. Choi, J.Y. Hong, H.K. Kim, Dyes Pigm. 113 (2015) 18-26;
      (b) N. Manfredi, B. Cecconi, A. Abbotto, Eur. J. Org. Chem. 2014 (2014) 7069-7086.

    9. [9]

      Z. Chi, J. Xu, Mechanochromic Aggregation-Induced Emission Materials in Aggregation-Induced Emiss. Appl, John Wiley & Sons, Ltd, 2013, pp. 61-86.

    10. [10]

      (a) X. Sun, Y. Wang, Y. Lei, Chem. Soc. Rev. 44 (2015) 8019-8061;
      (b) J.L. Banal, B. Zhang, D.J. Jones, K.P. Ghiggino, W.W. H. Wong, Acc. Chem. Res. 50 (2017) 49-57;
      (c) Y. Yuan, B. Liu, Chem. Sci. 8 (2017) 2537-2546;
      (d) X. Gu, T.K. Kwok Ryan, W.Y. Lam Jacky, B.Z. Tang, Biomaterials 146 (2017) 115-135;
      (e) Y. Hong, W.Y. Lam Jacky, B.Z. Tang, Chem. Soc. Rev. 40 (2011) 5361-5388;
      (f) T.K. Kwok Ryan, W.T. Leung Chris, W.Y. Lam Jacky, B.Z. Tang, Chem. Soc. Rev. 44 (2015) 4228-4238;
      (g) P. Zhao, L. Zhu, Chin. Chem. Lett. 29 (2018) 1706-1708.

    11. [11]

      G. Chen, W. Li, T. Zhou, et al., Adv. Mater. 27 (2015) 4496-4501.  doi: 10.1002/adma.201501981

    12. [12]

      B. Chen, G. Yu, X. Li, et al., J. Mater. Chem. C 1 (2013) 7409-7417.  doi: 10.1039/c3tc31751j

    13. [13]

      (a) T. Beppu, K. Tomiguchi, A. Masuhara, Y.J. Pu, H. Katagiri, Angew. Chem. Int. Ed. 54 (2015) 7332-7335;
      (b) A. Patra, S.P. Anthony, T.P. Radhakrishnan, Adv. Funct. Mater. 17 (2007) 2077-2084;
      (c) S. Kumar, P. Singh, P. Kumar, et al., J. Phys. Chem. C 120 (2016) 12723-12733;
      (d) H. Wu, Z. Chen, W. Chi, et al., Angew. Chem. Int. Ed. 58 (2019) 11419-11423.

    14. [14]

      (a) D.K. You, J.H. Lee, B.H. Choi, et al., Eur. J. Inorg. Chem. 2017 (2017) 2496-2503;
      (b) A. Raghuvanshi, A.K. Jha, A. Sharma, et al., Chem. Eur. J. 23 (2017) 4527-4531;
      (c) H. Naito, K. Nishino, Y. Morisaki, K. Tanaka, Y. Chujo, Angew. Chem. Int. Ed. 56 (2017) 254-259;
      (d) P. Gopikrishna, P.K. Iyer, J. Phys. Chem. C 120 (2016) 26556-26568.

    15. [15]

      A. C. Shaikh, D.S. Ranade, S. Thorat, et al., Chem. Commun. 51 (2015) 16115-16118.  doi: 10.1039/C5CC06351E

    16. [16]

      H. Yamane, K. Tanaka, Y. Chujo, Tetrahedron Lett. 56 (2015) 6786-6790.  doi: 10.1016/j.tetlet.2015.10.072

    17. [17]

      (a) M. Huang, S. Ye, K. Xu, et al., J. Mater. Chem. C 5 (2017) 3456-3460;
      (b) E. Heyer, J. Massue, G. Ulrich, Dyes Pigm. 143 (2017) 18-24;
      (c) E. Heyer, K. Benelhadj, S. Budzak, et al., Chem. Eur. J. 23 (2017) 7324-7336.

    18. [18]

      (a) P. Vila-Donat, S. Marin, V. Sanchis, A.J. Ramos, Food Chem. Toxicol. 114 (2018) 246-259;
      (b) Y. Hayashi, T. Aikawa, Y. Shimasaki, et al., Org. Process Res. Dev. 20 (2016) 1615-1620;
      (c) G.L. Moore, R.W. Stringham, D.S. Teager, T.Y. Yue, Org. Process Res. Dev. 21 (2017) 98-106.

    19. [19]

      V. J. Aran, N. Martin, C. Seoane, J.L. Soto, J. Sanz-Aparicio, F. Florencio, J. Org. Chem. 53 (1988) 5341-5343.  doi: 10.1021/jo00257a025

    20. [20]

      (a) G. Sathiyan, P. Sakthivel, Dyes Pigm. 143 (2017) 444-454;
      (b) G. Gopan, P.S. Salini, S. Deb, M. Hariharan, CrystEngComm 19 (2017) 419-425;
      (c) W.Y. Wong, S.F. Lee, H.S. Chan, et al., RSC Adv. 3 (2013) 26382-26390;
      (d) S. Sekiguchi, K. Kondo, Y. Sei, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 55 (2016) 6906-6910.

    21. [21]

      J. Zhou, X. Zhu, M. Huang, Y. Wan, Eur. J. Org. Chem. 2017 (2017) 2317-2321.  doi: 10.1002/ejoc.201700383

    22. [22]

      H. Tong, Y. Hong, Y. Dong, et al., J. Phys. Chem. B 111 (2007) 2000-2007.  doi: 10.1021/jp067374k

  • 加载中
    1. [1]

      Min FuRuihan WangWenqiang LiuSen ZhouChunhong ZhongYaohao LiPan HeXin LiShiying ShangZhongping Tan . Improved one-pot protein synthesis enabled by a more precise assessment of peptide arylthioester reactivity. Chinese Chemical Letters, 2025, 36(7): 110542-. doi: 10.1016/j.cclet.2024.110542

    2. [2]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    3. [3]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    4. [4]

      Xin ZhouGuangyao LiuMeifang YangMengyu LiXiaodi YangWeiliang GuYitian ZhaoHouchao Tao . Glycosyl N-phenyl pentafluorobenzimidates as a new generation of imidate donors for catalytic glycosylation. Chinese Chemical Letters, 2025, 36(8): 110734-. doi: 10.1016/j.cclet.2024.110734

    5. [5]

      Chun-Ying XuXiao-Lin LuanYuan-Yuan CuiCheng-Xiong Yang . One-pot in situ doping synthesis of phenylboronic acid-functionalized magnetic-cyclodextrin microporous organic network for specific enrichment and detection of sulfonylurea herbicides. Chinese Chemical Letters, 2025, 36(9): 110937-. doi: 10.1016/j.cclet.2025.110937

    6. [6]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    7. [7]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    8. [8]

      Yan ChenXinnan WangYifan LinChun Liu . Shape/dimension-controllable organic heterostructures from one monomer pair. Chinese Chemical Letters, 2025, 36(3): 109903-. doi: 10.1016/j.cclet.2024.109903

    9. [9]

      Fengzhang TUZhong JIN . Honeycomb-like N, O dual-doped carbon/selenium composites: Preparation and performance in alkali metal-selenium batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2371-2384. doi: 10.11862/CJIC.20250227

    10. [10]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    11. [11]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    12. [12]

      Chenxi ShangBoxuan LuChongbei WuShuqing ZhouLuyan ShiTayirjan Taylor IsimjanXiulin Yang . Inducing electronic rearrangement through Co3B-Mo2B5 catalysts: Efficient dual-function catalysis for NaBH4 hydrolysis and 4-nitrophenol reduction. Chinese Chemical Letters, 2025, 36(9): 111152-. doi: 10.1016/j.cclet.2025.111152

    13. [13]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    14. [14]

      Qi ZhangBin HanYucheng JinMingrun LiEnhui ZhangJianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330

    15. [15]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    16. [16]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    17. [17]

      Jiajie GuJiaxiang GuLei Yu . Selenium and Alzheimer's disease. Chinese Chemical Letters, 2025, 36(8): 110727-. doi: 10.1016/j.cclet.2024.110727

    18. [18]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    19. [19]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    20. [20]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

Metrics
  • PDF Downloads(16)
  • Abstract views(1819)
  • HTML views(227)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return