Citation: Pingzhou Wu, Qilong Zhou, Xiao-Yu Liu, Fei Xue, Yong Qin. Synthetic studies towards (-)-deserpidine: Total synthesis of the stereoisomer and derivative of (-)-deserpidine[J]. Chinese Chemical Letters, ;2021, 32(1): 401-404. doi: 10.1016/j.cclet.2020.02.009 shu

Synthetic studies towards (-)-deserpidine: Total synthesis of the stereoisomer and derivative of (-)-deserpidine

    * Corresponding authors.
    E-mail addresses: xuefei@scu.edu.cn (F. Xue), yongqin@scu.edu.cn (Y. Qin).
    1 These authors contributed equally to this work.
  • Received Date: 26 November 2019
    Revised Date: 11 January 2020
    Accepted Date: 7 February 2020
    Available Online: 8 February 2020

Figures(4)

  • The asymmetric synthesis of 16, 17, 20-epi-deserpidine and a derivative of (-)-deserpidine has been achieved. Key features in the assembly of the pentacyclic framework include a visible-light photocatalytic intra-/inter-/intramolecular radical cascade reaction to construct the tetracyclic ABCD ring system in one-pot and an intramolecularaldol reaction to forge the cyclohexane E ring.
  • 加载中
    1. [1]

      R.E. Woodson, H.W. Younken, E. Schlitter, J.A. Schneider, Rauwolfia: Botany, Pharmacognosy, ChemistryandPharmacology, Little, Brown andCo., Boston, 1957.

    2. [2]

      (a) J.M. Müller, E. Schlittler, H.J. Bein, Experientia 8 (1952) 338;
      (b) E. Schlittler, P.R. Ulshafer, M.L. Pandow, R. Hunt, L. Dorfman, Experientia 11 (1955) 64-65.

    3. [3]

      (a) H.B. MacPhillamy, C.F. Huebner, E. Schlittler, A.F.St. André, P.R.J. Ulshafer, J. Am. Chem. Soc. 77 (1955) 4335-4343;
      (b) P.E. Aldrich, P.A. Diassi, D.F. Dickel, J. Am. Chem. Soc. 81 (1959) 2481-2494;
      (c) E. Smith, R.S. Jaret, M. Shamma, R.J. Shine, J. Am. Chem. Soc. 86 (1964) 2083-2084;
      (d) M. Lounasmaa, A. Tolvanen, Heterocycles 23 (1985) 371-375.

    4. [4]

      (a) E. Wenkert, L.H. Liu, D.B.R. Johnston, J. Org, Chem. 30 (1965) 722-728;
      (b) S. Takano, F. Ito, K. Ogasawara, Heterocycles 14 (1980) 453-456;
      (c) T. Suzuki, A. Tomino, K. Unno, T. Kametani, Chem. Pharm. Bull. Jpn. 29 (1981) 76-81;
      (d) S. Chao, F.A. Kunng, J.M. Gu, H.L. Ammon, P.S. Mariano, J. Org. Chem. 49 (1984) 2708-2711;
      (e) E. Wenkert, Heterocycles 21 (1984) 325-329;
      (f) M.E. Jung, L.A. Light, J. Am. Chem. Soc. 106 (1984) 7614-7618;
      (g) M. Isobe, N. Fukami, T. Nishikawa, T. Goto, Heterocycles 25 (1987) 521-532;
      (h) R.P. Polniaszek, R.V. Stevens, J. Org. Chem. 51 (1986) 3023-3027.

    5. [5]

      (a) R.B. Woodward, F.E. Bader, H. Bickel, A.J. Frey, R.W. Kierstead, J. Am. Chem. Soc. 78 (1956) 2023-2025;
      (b) R.B. Woodward, F.E. Bader, H. Bickel, A.J. Frey, R.W. Kierstead, Tetrahedron 2 (1958) 1-57;
      (c) B.A. Pearlman, J. Am. Chem. Soc. 101 (1979) 6404-6408;
      (d) P.A. Wender, J.M. Schaus, A.W. White, J. Am. Chem. Soc. 102 (1980) 6157-6159;
      (e) P.A. Wender, J.M. Schaus, A.W. White, Heterocycles 25 (1987) 263-270;
      (f) S.F. Martin, H. Rueger, S.A. Williamson, S. Grzejszczak, J. Am. Chem. Soc. 109 (1987) 6124-6134;
      (g) G. Stork, Pure Appl. Chem. 61 (1989) 439-442;
      (h) S. Hanessian, J. Pan, A. Carnell, H. Bouchard, L. Lesage, J. Org. Chem. 62 (1997) 465-473;
      (i) G. Stork, P.C. Tang, M. Casey, B. Goodman, M. Toyota, J. Am. Chem. Soc. 127 (2005) 16255-16262;
      (j) S.M. Sparks, A.J. Gutierrez, K.J. Shea, J. Org. Chem. 68 (2003) 5274-5285;
      (k) N.S. Rajapaksa, M.A. McGowan, M. Rienzo, W.N. Jacobsen, Org. Lett. 15 (2013) 706-709;
      (l) J. Park, D.Y.K. Chen, Angew. Chem. Int. Ed. 130 (2018) 16384-16388.

    6. [6]

      (a) C. Szántay, G. Blaskó, K. Honty, et al., Liebigs Ann. Chem. 8 (1983) 1292-1309;
      (b) S. Sakai, M. Ogawa, Heterocycles 10 (1978) 67-71;
      (c) O. Miyata, Y. Hirata, T. Naito, I. Ninomiya, Heterocycles 22 (1984) 1041-1044;
      (d) H. Takeaki, M. Yumiko, Okiko, et al., Chem. Pharmaceu. Bull. 37 (1989) 901-906;
      (e) P.S. Mariano, E.W. Baxter, D. Labaree, H.L. Ammon, J. Am. Chem. Soc. 112 (1990) 7682-7692;
      (f) G. Varchi, A. Battaglia, C. Samorì, et al., J. Nat. Prod. 68 (2005) 1629-1631.

    7. [7]

      (a) R.W. Wilkins, W.E. Judson, New Eng. J. Med. 248 (1953) 48-56;
      (b) R.J. Vakil, Br. Heart J. 11 (1949) 350-355;
      (c) M. Bleuler, W.A. Stoll, Ann. New York Acad. Sci. 61 (1955) 167-173;
      (d) M.F. Kossover, A.M. Goldman, CHEST 42 (1962) 170-175;
      (e) A.S. Leon, M.S. Belle, M. Halpern, CHEST 42 (1962) 626-634;
      (f) D.S. Fabricant, N.R. Farnsworth, Envir. Health Persp. 109 (2001) 69-75.

    8. [8]

      X.Y. Liu, Y. Qin, Acc. Chem. Res. 52 (2019) 1877-1891.  doi: 10.1021/acs.accounts.9b00246

    9. [9]

      X. Wang, D. Xia, W. Qin, et al., Chem 2 (2017) 803-816.  doi: 10.1016/j.chempr.2017.04.007

    10. [10]

      R.M. Moriarty, O. Prakash, M.P. Duncan, R.K. Vaid, J. Org. Chem. 52 (1987) 150-153.  doi: 10.1021/jo00377a027

    11. [11]

      O.H. Oldenziel, D. van Leusen, A.M. VanLeusen, J. Org. Chem. 42 (1977) 3114-3118.  doi: 10.1021/jo00439a002

  • 加载中
    1. [1]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    2. [2]

      Qunlong ZhangJingyi KangJingwen WangTiancheng TanZhaoyong Lu . Divergent total synthesis of sesquiterpene (hydro)quinone meroterpenoids dysideanones A and E–G. Chinese Chemical Letters, 2025, 36(3): 109915-. doi: 10.1016/j.cclet.2024.109915

    3. [3]

      Yun-Hong YuYu PengWei-Dong Z. Li . Highly fused tetracyclic diterpenoid natural products: Diverse biosynthesis and total synthesis. Chinese Chemical Letters, 2025, 36(10): 111137-. doi: 10.1016/j.cclet.2025.111137

    4. [4]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    5. [5]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    6. [6]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    7. [7]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    8. [8]

      Xuan PanTao ShengZhanzhu Liu . A concise total synthesis of monoterpenoid indole alkaloid (-)-voacafricine A. Chinese Chemical Letters, 2025, 36(10): 110913-. doi: 10.1016/j.cclet.2025.110913

    9. [9]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    10. [10]

      Xiao-Gang WangAi-E WangPei-Qiang Huang . Corrigendum to "A concise formal stereoselective total synthesis of (–)-swainsonine" [Chin Chem Lett 25 (2014) 193–196]. Chinese Chemical Letters, 2025, 36(3): 110597-. doi: 10.1016/j.cclet.2024.110597

    11. [11]

      Fengqing WangChangxing QiChunmei ChenQin LiQingyi TongWeiguang SunZhengxi HuMinyan WangHucheng ZhuLianghu GuYonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252

    12. [12]

      Pengwei ChenXian MaNi SongJianjun WangHan DingPeng WangHongzhi CaoXue-Wei LiuZhihua LvMing Li . Synthesis of alduronic acid lactones and rare sugar glyconolactones via decarboxylative oxygenation of uronic acids: Construction of polyhydroxylated fused-ring alkaloids. Chinese Chemical Letters, 2025, 36(11): 110983-. doi: 10.1016/j.cclet.2025.110983

    13. [13]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    16. [16]

      Nana YangRui YuanXinyue FuXiao TianJin YuShengzhou MaLiuqing WenJiabin Zhang . Concise synthesis of NDP-activated uronic acid by an oxidation reaction insertion strategy. Chinese Chemical Letters, 2025, 36(8): 110757-. doi: 10.1016/j.cclet.2024.110757

    17. [17]

      Xia-Lin DaiYu-Hang YaoJian-Feng ZhenWei GaoJia-Mei ChenTong-Bu Lu . Reaction crystallization method based on deep eutectic solvents: A novel, green and efficient cocrystal synthesis approach. Chinese Chemical Letters, 2025, 36(11): 110413-. doi: 10.1016/j.cclet.2024.110413

    18. [18]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    19. [19]

      Fangqing ZhangYu WangZhenda TanYangbin LiuLijuan SongXiaoming Feng . Catalytic asymmetric inverse-electron-demand Diels–Alder reaction of 2-pyrones with aryl enol ethers. Chinese Chemical Letters, 2025, 36(7): 110581-. doi: 10.1016/j.cclet.2024.110581

    20. [20]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

Metrics
  • PDF Downloads(9)
  • Abstract views(1959)
  • HTML views(264)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return