Citation: Zhuang Hongfeng, Li Heng, Zhang Shuai, Yin Yanbin, Han Feng, Sun Chao, Miao Chengxia. TEMPO and its derivatives mediated reactions under transition-metal-free conditions[J]. Chinese Chemical Letters, ;2020, 31(1): 39-48. doi: 10.1016/j.cclet.2019.06.027 shu

TEMPO and its derivatives mediated reactions under transition-metal-free conditions




  • Author Bio: Hongfeng Zhuang was born in Shandong province in 1996, and entered College of Chemistry and Material Science, Shandong Agricultural University in 2015. At present, she is carrying out scientific research under the guidance of Prof. Chengxia Miao, developing the green catalytic oxidation



    Feng Han received his PhD in physical chemistry from Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences in 2012 under the guidance of Prof. Chungu Xia. And he worked in Lanzhou Institute of Chemical Physics until 2017. Then he moved to Shandong Agricultural University. At present, his primary research interest is homogeneous catalysis, especially designing and synthesizing novel functionalized ionic liquids for exploiting new reactions for building a series of C-X bonds

    Chengxia Miao obtained her PhD in organic chemistry from Nankai University in 2010 under the guidance of Prof. Liang-Nian He. Then she joined the group of Prof. Wei Sun in Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. In 2017 she moved to her present position as professor in Shandong Agricultural University. Her current research interests focus on oxidation reactions catalyzed by organic small molecules or biomimetic catalysts
  • * Corresponding author.
    E-mail addresses: fenghan@sdau.edu.cn (F. Han), chxmiao@sdau.edu.cn (C. Miao).
  • Received Date: 18 April 2019
    Revised Date: 10 June 2019
    Accepted Date: 14 June 2019
    Available Online: 17 January 2019

Figures(30)

  • 2, 2, 6, 6-Tetramethyl-1-piperidinyl-N-oxyl (TEMPO) and its derivatives as stable radicals can participate in many reactions. During the process, TEMPO and its derivatives could act not only as the substrates to capture or initiate new radical intermediates to provide new compounds but also as organic catalysts or oxidants for transformations of alkenes, alcohols, aldehydes and so on to synthesize various high valueadded compounds. In this review, we would introduce recent advances of the transformations of different substrates mediated by TEMPO and its derivatives under transition-metal-free conditions.
  • 加载中
    1. [1]

      O.L. Lebedev, S.N. Kazarnovsky, Tr. Khim, Khim. Tekhnol. 3(1959) 649-653.

    2. [2]

      J.A. Cella, J.A. Kelly, E.F. Kenehan, J. Org. Chem. 40(1975) 1860-1862.  doi: 10.1021/jo00900a049

    3. [3]

      A. Rahimi, A. Azarpira, H. Kim, J. Ralph, S.S. Stahl, J. Am. Chem. Soc.135(2013) 6415-6418.  doi: 10.1021/ja401793n

    4. [4]

      (a) X.Q. Hu, X. Qi, J.R. Chen, et al., Nat. Commun. 7 (2016) 11188;
      (b) C.F. Harris, C.S. Kuehner, J. Bacsa, J.D. Soper, Angew. Chem. Int. Ed. 57 (2018) 1311-1315.

    5. [5]

      R. Shinoda, T. Saito, Y. Okita, A. Isogai, Biomacromolecules13(2012) 842-849.  doi: 10.1021/bm2017542

    6. [6]

      A. Badalyan, S.S. Stahl, Nature 535(2016) 406-410.  doi: 10.1038/nature18008

    7. [7]

      (a) J.M. Hoover, B.L. Ryland, S.S. Stahl, J. Am. Chem. Soc. 135 (2013) 2357-2367;
      (b) Y. Jing, J. Jiang, B. Yan, et al., Adv. Synth. Catal. 353 (2011) 1146-1152.

    8. [8]

      B.L. Ryland, S.S. Stahl, Angew. Chem. Int. Ed. 53(2014) 8824-8838.  doi: 10.1002/anie.201403110

    9. [9]

      K. Mitsudo, T. Shiraga, H. Tanaka, Tetrahedron Lett. 49(2008) 6593-6595.  doi: 10.1016/j.tetlet.2008.09.022

    10. [10]

      S. Maity, S. Manna, S. Rana, et al., J. Am. Chem. Soc. 135(2013) 3355-3358.  doi: 10.1021/ja311942e

    11. [11]

      (a) M.C. Baldovi, N. Mohtat, J.C. Scaiano, Macromolecules 29 (1996) 5497-5499;
      (b) L. Tebben, A. Studer, Angew. Chem. Int. Ed. 50 (2011) 5034-5068.

    12. [12]

      (a) R.C. Larock, Pure Appl. Chem. 71 (1999) 1435-1442;
      (b) C.M. Che, J.S. Huang, Coord. Chem. Rev. 231 (2002) 151-164;
      (c) S. Tang, K. Liu, C. Liu, A. Lei, Chem. Soc. Rev. 44 (2015) 1070-1082;
      (d) G. Yin, X. Mu, G. Liu, Acc. Chem. Res. 49 (2016) 2413-2423.

    13. [13]

      M.F. Sloan, A.S. Matlack, D.S. Breslow, J. Am. Chem. Soc. 85(1963) 4014-4018.  doi: 10.1021/ja00907a023

    14. [14]

      Y. Zhu, Q. Wang, R.G. Cornwall, Y. Shi, Chem. Rev. 114(2014) 8199-8256.  doi: 10.1021/cr500064w

    15. [15]

      C.J.R. Bataille, T.J. Donohoe, Chem. Soc. Rev. 40(2011) 114-128.  doi: 10.1039/B923880H

    16. [16]

      C.X. Miao, B. Yu, L.N. He, Green Chem. 13(2011) 541-544.  doi: 10.1039/c0gc00676a

    17. [17]

      M.J.S. Dewar, R.C. Fahey, J. Am. Chem. Soc. 85(1963) 3645-3648.  doi: 10.1021/ja00905a025

    18. [18]

      F. Minisci, Acc. Chem. Res. 8(1975) 165-171.  doi: 10.1021/ar50089a004

    19. [19]

      X. Wang, A. Studer, Acc. Chem. Res. 50(2017) 1712-1724.  doi: 10.1021/acs.accounts.7b00148

    20. [20]

      B. Zhang, A. Studer, Org. Lett. 15(2013) 4548-4551.  doi: 10.1021/ol402106x

    21. [21]

      M. Hartmann, Y. Li, C. Mück-Lichtenfeld, A. Studer, Chem. -Eur. J. 22(2016) 3485-3490.  doi: 10.1002/chem.201504852

    22. [22]

      M. Hartmann, Y. Li, A. Studer, J. Am. Chem. Soc. 134(2012) 16516-16519.  doi: 10.1021/ja307638u

    23. [23]

      Y. Li, M. Hartmann, C.G. Daniliuc, A. Studer, Chem. Commun. 51(2015) 5706-5709.  doi: 10.1039/C5CC00591D

    24. [24]

      Y. Li, A. Studer, Angew. Chem. Int. Ed. 51(2012) 8221-8224.  doi: 10.1002/anie.201202623

    25. [25]

      I. Colomer, R.C. Barcelos, K.E. Christensen, T.J. Donohoe, Org. Lett. 18(2016) 5880-5883.  doi: 10.1021/acs.orglett.6b02959

    26. [26]

      J.L. Liu, S.W. Wu, Q.Y. Wu, F. Liu, J. Org. Chem. 83(2018) 8183-8192.  doi: 10.1021/acs.joc.8b00954

    27. [27]

      J.E. Nutting, M. Rafiee, S.S. Stahl, Chem. Rev. 118(2018) 4834-4885.  doi: 10.1021/acs.chemrev.7b00763

    28. [28]

      J.C. Siu, G.S. Sauer, A. Saha, et al., J. Am. Chem. Soc. 140(2018) 12511-12520.  doi: 10.1021/jacs.8b06744

    29. [29]

      J.C. Siu, J.B. Parry, S. Lin, J. Am. Chem. Soc. 141(2019) 2825-2831.  doi: 10.1021/jacs.8b13192

    30. [30]

      C. Wan, R.J. Song, J.H. Li, Org. Lett. 21(2019) 2800-2803.  doi: 10.1021/acs.orglett.9b00771

    31. [31]

      X.Q. Hu, J. Chen, J.R. Chen, D.M. Yan, W.J. Xiao, Chem. Eur. J. 22(2016) 14141-14146.  doi: 10.1002/chem.201602597

    32. [32]

      D. Gangaprasad, J.P. Raj, T. Kiranmye, K. Karthikeyan, J. Elangovan, Eur. J. Org. Chem. 2016(2016) 5642-5646.  doi: 10.1002/ejoc.201601121

    33. [33]

      (a) Y. Liu, H. Hu, J. Zhou, et al., Org. Biomol. Chem. 15 (2017) 5016-5024;
      (b) F. Shi, Y. Zhang, Z. Lu, et al., Synthesis 48 (2016) 413-420.

    34. [34]

      T. Wang, N. Jiao, J. Am. Chem. Soc. 135(2013) 11692-11695.  doi: 10.1021/ja403824y

    35. [35]

      (a) S. Manna, S. Jana, T. Saboo, A. Maji, D. Maiti, Chem. Commun. 49 (2013) 5286-5288;
      (b) S. Maity, T. Naveen, U. Sharma, D. Maiti, Org. Lett. 15 (2013) 3384-3387.

    36. [36]

      G.K. Kole, G.K. Tan, J.J. Vittal, Org. Lett. 12(2010) 128-131.  doi: 10.1021/ol9025233

    37. [37]

      (a) T. Mitsudo, H. Naruse, T. Kondo, Y. Ozaki, Y. Watanabe, Angew. Chem. Int. Ed. 33 (1994) 580-581;
      (b) N.N. Noucti, E.J. Alexanian, Angew. Chem. Int. Ed. 54 (2015) 5447-5450.

    38. [38]

      M.L. Conner, Y. Xu, M.K. Brown, J. Am. Chem. Soc. 137(2015) 3482-3485.  doi: 10.1021/jacs.5b00563

    39. [39]

      S. Kyokane, Y. Tanaka, Y. Sei, M. Shiotsuki, Tetrahedron Lett. 58(2017) 4755-4758.  doi: 10.1016/j.tetlet.2017.10.072

    40. [40]

      (a) R. Liu, X. Liang, C. Dong, X. Hu, J. Am. Chem. Soc. 126 (2004) 4112-4113;
      (b) X. Wang, R. Liu, Y. Jin, X. Liang, Chem. -Eur. J. 14 (2008) 2679-2685;
      (c) Y. Xie, W. Mo, D. Xu, et al., J. Org. Chem. 72 (2007) 4288-4291.

    41. [41]

      Y. Dong, X. Zhao, R. Liu, Chin. J. Chem. 33(2015) 1019-1023.  doi: 10.1002/cjoc.201500357

    42. [42]

      M.S. Laeini, A. Shaabani, ChemistrySelect 2(2017) 9084-9087.  doi: 10.1002/slct.201701428

    43. [43]

      (a) G.E. Dwulet, D.L. Gin, Chem. Commun. 54 (2018) 12053-12056;
      (b) M. Liu, B. Zhou, L. Zhou, et al., J. Mater. Chem. A 6 (2018) 9860-9865;
      (c) B. Karimi, S. Vahdati, H. Vali, RSC Adv. 6 (2016) 63717-63723;
      (d) H. Zhang, L. Fu, H. Zhong, Chin. J. Catal. 34 (2013) 1848-1854.

    44. [44]

      M. Rafiee, K.C. Miles, S.S. Stahl, J. Am. Chem. Soc. 137(2015) 14751-14757.  doi: 10.1021/jacs.5b09672

    45. [45]

      A. Das, S.S. Stahl, Angew. Chem. Int. Ed. 56(2017) 8892-8897.  doi: 10.1002/anie.201704921

    46. [46]

      H. Shiigi, H. Mori, T. Tanaka, Y. Demizu, O. Onomura, Tetrahedron Lett. 49(2008) 5247-5251.  doi: 10.1016/j.tetlet.2008.06.112

    47. [47]

      M. Tomizawa, M. Shibuya, Y. Iwabuchi, Org. Lett. 11(2009) 1829-1831.  doi: 10.1021/ol900441f

    48. [48]

      M. Shibuya, M. Tomizawa, I. Suzuki, Y. Iwabuchi, J. Am. Chem. Soc.128(2006) 8412-8413.  doi: 10.1021/ja0620336

    49. [49]

      M. Shibuya, T. Shibuta, H. Fukuda, Y. Iwabuchi, Org. Lett.14(2012) 5010-5013.  doi: 10.1021/ol3021435

    50. [50]

      S. Zhang, C. Miao, C. Xia, W. Sun, ChemCatChem 7(2015) 1865-1870.  doi: 10.1002/cctc.201500214

    51. [51]

      Y. Jing, C.G. Daniliuc, A. Studer, Org. Lett. 16(2014) 4932-4935.  doi: 10.1021/ol5024568

    52. [52]

      R. Ray, R.D. Jana, M. Bhadra, D. Maiti, G.K. Lahiri, Chem. -Eur. J. 20(2014) 15618-15624.  doi: 10.1002/chem.201403786

    53. [53]

      (a) M. Ji, X. Wang, Y.N. Lim, Y.W. Kang, H.Y. Jang, Eur. J. Org. Chem. 2013 (2013) 7881-7885;
      (b) Y.W. Kang, H.Y. Jang, RSC Adv. 4 (2014) 44486-44490.

    54. [54]

      J.M. Vatèle, Synlett 26(2015) 2280-2284.  doi: 10.1055/s-0034-1381056

    55. [55]

      (a) L.M. Dornan, Q. Cao, J.C.A. Flanagan, et al., Chem. Commun. 49 (2013) 6030-6032;
      (b) S.U. Dighe, D. Chowdhury, S. Batra, Adv. Synth. Catal. 356 (2014) 3892-3896.

    56. [56]

      J.M. Vatèle, Synlett 25(2014) 1275-1278.  doi: 10.1055/s-0033-1341124

    57. [57]

      T. Chinnusamy, Catal. Commun. 119(2019) 51-56.  doi: 10.1016/j.catcom.2018.08.021

    58. [58]

      (a) J.J. Mousseau, A.B. Charette, Acc. Chem. Res. 46 (2013) 412-424;
      (b) C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 41 (2012) 3464-3484.

    59. [59]

      (a) Y. Bansal, O. Silakari, Bioorg. Med. Chem. 20 (2012) 6208-6236;
      (b) J.P. Michael, Nat. Prod. Rep. 25 (2008) 166-187.

    60. [60]

      D. Xue, Y.Q. Long, J. Org. Chem. 79(2014) 4727-4734.  doi: 10.1021/jo5005179

    61. [61]

      J. Hu, H. Xu, P. Nie, et al., Chem. -Eur. J. 20(2014) 3932-3938.  doi: 10.1002/chem.201304923

    62. [62]

      J.P. Lin, F.H. Zhang, Y.Q. Long, Org. Lett. 16(2014) 2822-2825.  doi: 10.1021/ol500864r

    63. [63]

      B. Han, X.L. Yang, R. Fang, et al., Angew. Chem. Int. Ed. 51(2012) 8816-8820.  doi: 10.1002/anie.201203799

    64. [64]

      X.Y. Duan, X.L. Yang, R. Fang, et al., J. Org. Chem. 78(2013) 10692-10704.  doi: 10.1021/jo4016908

    65. [65]

      X.Y. Duan, N.N. Zhou, R. Fang, et al., Angew. Chem. Int. Ed. 53(2014) 3158-3162.  doi: 10.1002/anie.201309918

    66. [66]

      F. Chen, X.L. Yang, Z.W. Wu, B. Han, J. Org. Chem. 81(2016) 3042-3050.  doi: 10.1021/acs.joc.6b00180

    67. [67]

      X. Zhu, Y.F. Wang, W. Ren, F.L. Zhang, S. Chiba, Org. Lett.15(2013) 3214-3217.  doi: 10.1021/ol4014969

    68. [68]

      X. Zhu, S. Chiba, Org. Biomol. Chem. 12(2014) 4567-4570.  doi: 10.1039/C4OB00839A

    69. [69]

      J.L. Zhan, M.W. Wu, D. Wei, et al., ACS Catal. 9(2019) 4179-4188.  doi: 10.1021/acscatal.9b00832

    70. [70]

      K.M. Lambert, J.M. Bobbitt, S.A. Eldirany, K.B. Wiberg, W.F. Bailey, Org. Lett.16(2014) 6484-6487.  doi: 10.1021/ol503345h

    71. [71]

      K.M. Lambert, J.M. Bobbitt, S.A. Eldirany, et al., Chem. -Eur. J. 22(2016) 5156-5159.  doi: 10.1002/chem.201600549

    72. [72]

      P. Galletti, G. Martelli, G. Prandini, C. Colucci, D. Giacomini, RSC Adv. 8(2018) 9723-9730.  doi: 10.1039/C8RA01365A

    73. [73]

      A.H. Bansode, G. Suryavanshi, RSC Adv. 8(2018) 32055-32062.  doi: 10.1039/C8RA07451H

    74. [74]

      Y. Chen, L. Qian, W. Zhang, B. Han, Angew. Chem. Int. Ed. 47(2008) 9330-9333.  doi: 10.1002/anie.200803381

    75. [75]

      H. Huo, X.Y. Tang, Y. Gong, Synthesis 50(2018) 2727-2740.  doi: 10.1055/s-0037-1610131

    76. [76]

      B. Han, C. Wang, R.F. Han, et al., Chem. Commun. 47(2011) 7818-7820.  doi: 10.1039/c1cc12308d

    77. [77]

      T. Kano, F. Shirozu, K. Maruoka, J. Am. Chem. Soc. 135(2013) 18036-18039.  doi: 10.1021/ja4099627

    78. [78]

      X. Zhao, T.X. Liu, N. Ma, G. Zhang, J. Org. Chem. 82(2017) 6125-6132.  doi: 10.1021/acs.joc.7b00686

    79. [79]

      S.E. Baillie, V.L. Blair, T.D. Bradley, et al., Chem. Sci. 4(2013) 1895-1905.  doi: 10.1039/c3sc22326d

    80. [80]

      X.L. Yang, X.X. Peng, F. Chen, B. Han, Org. Lett. 18(2016) 2070-2073.  doi: 10.1021/acs.orglett.6b00702

    81. [81]

      W.B. Qin, J.Y. Zhu, Y.B. Kong, et al., Org. Biomol. Chem.12(2014) 4252-4259.  doi: 10.1039/C4OB00356J

    82. [82]

      (a) B.M. Trost, E. Keinan, J. Org. Chem. 45 (1980) 2741-2746;
      (b) R. Shi, L. Lu, H. Zhang, et al., Angew. Chem. Int. Ed. 52 (2013) 10582-10585.

    83. [83]

      X. Jia, P. Li, Y. Shao, et al., Green Chem. 19(2017) 5568-5574.  doi: 10.1039/C7GC02775C

    84. [84]

      H. Liu, Y. Fang, S.Y. Wang, S.J. Ji, Org. Lett. 20(2018) 930-933.  doi: 10.1021/acs.orglett.7b03783

    85. [85]

      X.Y. Qian, S.Q. Li, J. Song, H.C. Xu, ACS Catal. 7(2017) 2730-2734.  doi: 10.1021/acscatal.7b00426

    86. [86]

      B. Dong, S. Lu, J. Jiang, et al., J. Chem. Technol. Biotechnol. 87(2012) 341-345.  doi: 10.1002/jctb.2719

    87. [87]

      L. Yang, S. Li, Y. Dou, et al., Asian J. Org. Chem. 6(2017) 265-268.  doi: 10.1002/ajoc.201600588

    88. [88]

      (a) S. Manna, S. Jana, T. Saboo, A. Majia, D. Maiti, Chem. Commun. 49 (2013) 5286-5288;
      (b) A. Zhao, Q. Jiang, J. Jia, et al., Tetrahedron Lett. 57 (2016) 80-84.

    89. [89]

      U. Dutta, S. Maity, R. Kancherla, D. Maiti, Org. Lett. 16(2014) 6302-6305.  doi: 10.1021/ol503025n

    90. [90]

      X.H. Yang, X.H. Ouyang, W.T. Wei, R.J. Song, J.H. Li, Adv. Synth. Catal. 357(2015) 1161-1166.  doi: 10.1002/adsc.201400895

    91. [91]

      X.H. Hao, P. Gao, X.R. Song, et al., Chem. Commun. 51(2015) 6839-6842.  doi: 10.1039/C5CC00872G

    92. [92]

      B. Gou, D. Li, C. Yang, et al., J. Photochem. Photobiol. A 233(2012) 46-49.  doi: 10.1016/j.jphotochem.2012.02.008

    93. [93]

      Z. Shen, M. Chen, T. Fang, et al., Tetrahedron Lett. 56(2015) 2768-2772.  doi: 10.1016/j.tetlet.2015.04.033

    94. [94]

      A. Chennaiah, A.K. Verma, Y.D. Vankar, J. Org. Chem. 83(2018) 10535-10540.  doi: 10.1021/acs.joc.8b01191

    95. [95]

      X. Tian, Y.L. Ren, F. Ren, et al., Synlett 29(2018) 2444-2448.  doi: 10.1055/s-0037-1611062

    96. [96]

      J.H. Noh, J. Kim, J. Org. Chem. 80(2015) 11624-11628.  doi: 10.1021/acs.joc.5b02333

    97. [97]

      C. Fang, M. Li, X. Hu, et al., Adv. Synth. Catal. 358(2016) 1157-1163.  doi: 10.1002/adsc.201501130

    98. [98]

      S. Chiba, H. Chen, Org. Biomol. Chem. 12(2014) 4051-4060.  doi: 10.1039/C4OB00469H

    99. [99]

      P. Novák, A. Correa, J. Gallardo-Donaire, R. Martin, Angew. Chem. Int. Ed. 50(2011) 12236-12239.  doi: 10.1002/anie.201105894

    100. [100]

      G. Zhang, Y. Zhang, R. Wang, Angew. Chem. Int. Ed. 50(2011) 10429-10432.  doi: 10.1002/anie.201105123

    101. [101]

      U. Osorio-Nieto, D. Chamorro-Arenas, L. Quintero, H. Höpfl, F. Sartillo-Piscil, J. Org. Chem. 81(2016) 8625-8632.  doi: 10.1021/acs.joc.6b01566

    102. [102]

      D. Chamorro-Arenas, U. Osorio-Nieto, L. Quintero, L. Hernández-García, F. Sartillo-Piscil, J. Org. Chem. 83(2018) 15333-15346.  doi: 10.1021/acs.joc.8b02564

    103. [103]

      Z.L. Wang, X.L. An, L.S. Ge, et al., Tetrahedron 70(2014) 3788-3792.  doi: 10.1016/j.tet.2014.04.021

    104. [104]

      C. Li, C.C. Zeng, L.M. Hu, et al., Electrochim. Acta 114(2013) 560-566.  doi: 10.1016/j.electacta.2013.10.093

    105. [105]

      Z. Zhang, Y. Gao, Y. Liu, et al., Org. Lett. 17(2015) 5492-5495.  doi: 10.1021/acs.orglett.5b02877

    106. [106]

      B. Zhang, Y. Cui, N. Jiao, Chem. Commun. 48(2012) 4498-4500.  doi: 10.1039/c2cc30684k

    107. [107]

      W. Hu, J.P. Lin, L.R. Song, Y.Q. Long, Org. Lett. 17(2015) 1268-1271.  doi: 10.1021/acs.orglett.5b00248

    108. [108]

      J. Peng, G. Huang, H.J. Wang, et al., J. Org. Chem. 83(2018) 85-95.  doi: 10.1021/acs.joc.7b02378

    109. [109]

      C. Ganachaud, V. Garfagnoli, T. Tron, G. Iacazio, Tetrahedron Lett. 49(2008) 2476-2478.  doi: 10.1016/j.tetlet.2008.02.021

    110. [110]

      W.B. Qin, Q. Chang, Y.H. Bao, et al., Org. Biomol. Chem. 10(2012) 8814-8821.  doi: 10.1039/c2ob26390d

  • 加载中
    1. [1]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    2. [2]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    3. [3]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    4. [4]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    5. [5]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    6. [6]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    7. [7]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    8. [8]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    9. [9]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    10. [10]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    11. [11]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    12. [12]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    15. [15]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    16. [16]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    17. [17]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    18. [18]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    19. [19]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    20. [20]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

Metrics
  • PDF Downloads(56)
  • Abstract views(1925)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return