Citation: Feng Yadong, Zhang Zhenyue, Qi Fu, Yao Qiuhong, Huang Huabin, Shen Jinhai, Cui Xiuling. Ir-catalyzed regiospecific mono-sulfamidation of arylquinazolinones[J]. Chinese Chemical Letters, ;2020, 31(1): 58-60. doi: 10.1016/j.cclet.2019.05.013 shu

Ir-catalyzed regiospecific mono-sulfamidation of arylquinazolinones

    * Corresponding author at: College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China.
    ** Corresponding author.
    E-mail addresses: fengyd@hxxy.edu.cn (Y. Feng), cuixl@hqu.edu.cn (X. Cui).
  • Received Date: 26 March 2019
    Revised Date: 24 April 2019
    Accepted Date: 7 May 2019
    Available Online: 7 January 2019

Figures(2)

  • An Ir-catalyzed selective mono-sulfamidation of 2-arylquinazolinones has been achieved with a low catalyst loading under mild conditions. A series of regioselective mono-sulfamided 2-arylquinazolinones were obtained in up to 90% yields. Compared with our previous work of constructing di-sulfamidated 2-arylquinazolinones, the mono-sulfamided products could be obtained selectively by changing the ratio of substrates, the loading of catalyst, acid additive, and reaction time.
  • 加载中
    1. [1]

      (a) A.K. Nanda, S. Ganguli, R. Chakraborty, Molecules 12 (2007) 2413-2426;
      (b) J.H. Chan, J.S. Hong, L.F. Kuyper, et al., J. Med. Chem. 38 (1995) 3608-3616;
      (c) H. Kikuchi, K. Yamamoto, S. Horoiwa, et al., J. Med. Chem. 49 (2006) 4698-4706;
      (d) M.H. Yen, J.R. Sheu, I.H. Peng, Y.M. Lee, J.W.J. Chern, Pharm. Pharmacol. 48 (1996) 90-95;
      (e) A. Archana, V.K. Shrivastava, R. Chandra, A. Kumar, Indian J. Chem. 41B (2002) 2371-2375;
      (f) J. Kunes, J. Bazant, M. Pour, K. Waisser, M. Slosarek, J. Janota, Farmaco. 55 (2000) 725-729;
      (g) K. Waisser, J. Gregor, H. Dostal, et al., Farmaco 56 (2001) 803-807;
      (h) Y. Takase, T. Saeki, N. Watanabe, et al., J. Med. Chem. 37 (1994) 2106-2111;
      (i) M. Dupuy, F. Pinguet, O. Chavignon, et al., Chem. Pharm. Bull. 49 (2001) 1061-1065;
      (j) P.M. Chandrika, T. Yakaiah, A.R.R. Rao, et al., Eur. J. Med. Chem. 43 (2008) 846-852.

    2. [2]

      Y. Feng, Y. Li, G. Cheng, L. Wang, X. Cui, J. Org. Chem. 80(2015) 7099-7107.  doi: 10.1021/acs.joc.5b00957

    3. [3]

      M. Liu, M. Shu, C. Yao, G. Yin, D. Wang, J. Huang, Org. Lett. 18(2016) 824-827.  doi: 10.1021/acs.orglett.6b00113

    4. [4]

      L. Wei, G. He, X. Kong, et al., J. Org. Chem. 83(2018) 6719-6727.  doi: 10.1021/acs.joc.8b00168

    5. [5]

      Y. Zhang, Y. Shao, J. Gong, et al., Adv. Synth. Catal. 17(2018) 3260-3265.

    6. [6]

      D.N. Garad, A.B. Viveki, S.B. Mhaske, J. Org. Chem. 12(2017) 6366-6372.  doi: 10.1021/acs.joc.7b00948

    7. [7]

      A.B. Viveki, S.B. Mhaske, J. Org. Chem. 16(2018) 8906-8913.  doi: 10.1021/acs.joc.8b01143

    8. [8]

      G. Bairy, S. Das, H.M. Begam, R. Jana, Org. Lett. 20(2018) 7107-7112.  doi: 10.1021/acs.orglett.8b03048

    9. [9]

      Y. Feng, N. Tian, Y. Li, et al., Org. Lett. 19(2017) 1658-1661.  doi: 10.1021/acs.orglett.7b00452

    10. [10]

      (a) J. Kim, S. Chang, Angew. Chem. Int. Ed. 53 (2014) 2203-2207;
      (b) T. Kang, Y. Kim, D. Lee, Z. Wang, S. Chang, J. Am. Chem. Soc. 136 (2014) 4141-4144;
      (c) H. Hwang, J. Kim, J. Jeong, S. Chang, J. Am. Chem. Soc. 136 (2014) 10770-10776;
      (d) C. Pi, X. Cui, Y. Wu, J. Org. Chem. 80 (2015) 7333-7339;
      (e) B. Zhu, X. Cui, C. Pi, D. Chen, Y. Wu, Adv. Synth. Catal. 358 (2016) 326-332;
      (f) Y. Park, Y. Kim, S. Chang, Chem. Rev. 117 (2017) 9247-9301;
      (g) D. Lee, Y. Kim, S. Chang, J. Org. Chem. 78 (2013) 11102-11109;
      (h) T. Kang, H. Kim, J.G. Kim, S. Chang, Chem. Commun. 50 (2014) 12073-12075;
      (i) H. Kim, G. Park, J. Park, S. Chang, ACS Catal. 6 (2016) 5922-5929.

    11. [11]

      J.Y. Kim, S.H. Park, J. Ryu, et al., J. Am. Chem. Soc. 134(2012) 9110-9113.  doi: 10.1021/ja303527m

    12. [12]

      D.G. Yu, M. Suri, F. Glorius, J. Am. Chem. Soc. 135(2013) 8802-8805.  doi: 10.1021/ja4033555

    13. [13]

      (a) V.S. Thirunavukkarasu, K. Raghuvanshi, L. Ackermann, Org. Lett. 15 (2013) 3286-3289;
      (b) B. Sun, T. Yoshino, S. Matsunaga, M. Kanai, Adv. Synth. Catal. 356 (2014) 1491-1495;
      (c) N. Wang, R. Li, L. Li, et al., J. Org. Chem. 79 (2014) 5379-5385;
      (d) B. Zhou, Y. Yang, J. Shi, H. Feng, Y. Li, Chem. Eur. J. 19 (2013) 10511-10515;
      (e) M.E. Wei, L.H. Wang, Y.Y. Li, X. Cui, Chin. Chem. Lett. 26 (2015) 1336-1340;
      (f) C. Pan, N. Jin, H. Zhang, J. Han, C. Zhu, J. Org. Chem. 79 (2014) 9427-9432.

    14. [14]

      Y. Feng, Y. Li, Y. Yu, L. Wang, X. Cui, RSC Adv. 8(2018) 8450-8454.  doi: 10.1039/C8RA00524A

    15. [15]

      (a) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29 (2018) 907-910;
      (b) T. Yuan, C. Pi, C. You, et al., Chem. Commun. 52 (2019) 129-258;
      (c) L. Xu, T. Li, L. Wang, X. Cui, J. Org. Chem. 84 (2019) 560-567;
      (d) Z. Yang, L. Jie, Z. Yao, Z. Yang, X. Cui, Adv. Catal. Synth. 1 (2019) 214-218;
      (e) M. Gao, Y. Li, L. Xie, R. Chauvin, X. Cui, Chem. Commun. 52 (2016) 2846-2849;
      (f) Y. Yu, Y. Feng, R. Chauvin, et al., Org. Lett. 20 (2018) 4209-4212;
      (g) Y. Li, C. Jia, H. Li, et al., Org. Lett. 20 (2018) 4930-4933;
      (h) L. Jie, L. Wang, D. Xiong, et al., J. Org. Chem. 83 (2018) 10974-10984;
      (i) L. Xu, L. Wang, Y. Feng, et al., Org. Lett. 19 (2017) 4343-4346.

    16. [16]

      (a) J. Ryu, K. Shin, S.H. Park, J.Y. Kim, S. Chang, Angew. Chem. Int. Ed. 51 (2012) 9904-9908;
      (b) K. Shin, Y. Baek, S. Chang, Angew. Chem. Int. Ed. 52 (2013) 8031-8036;
      (c) J. Ryu, J. Kwak, K. Shin, D. Lee, S. Chang, J. Am. Chem. Soc. 135 (2013) 12861-12868.

  • 加载中
    1. [1]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    2. [2]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    3. [3]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    4. [4]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    5. [5]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    6. [6]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    7. [7]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    8. [8]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    9. [9]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    10. [10]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    13. [13]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    14. [14]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    15. [15]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    16. [16]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    17. [17]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    18. [18]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    19. [19]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    20. [20]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

Metrics
  • PDF Downloads(10)
  • Abstract views(966)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return