In-situ polymerized cross-linked binder for cathode in lithium-sulfur batteries
-
* Corresponding author.
E-mail address: he.yanbing@sz.tsinghua.edu.cn (Y.-B. He).
Citation:
Ye Heng, Lei Danni, Shen Lu, Ni Bin, Li Baohua, Kang Feiyu, He Yan-Bing. In-situ polymerized cross-linked binder for cathode in lithium-sulfur batteries[J]. Chinese Chemical Letters,
;2020, 31(2): 570-574.
doi:
10.1016/j.cclet.2019.04.047
Z.W. Seh, Y. Sun, Q. Zhang, et al., Chem. Soc. Rev. 45 (2016) 5605-5634.
doi: 10.1039/C5CS00410A
A. Manthiram, X. Yu, S. Wang, Nat. Rev. Maters. 2 (2017) 16103.
doi: 10.1038/natrevmats.2016.103
Q. Pang, X. Liang, C.Y. Kwok, et al., Nat. Energy 1 (2016) 16132.
doi: 10.1038/nenergy.2016.132
J. Liang, Z.H. Sun, F. Li, et al., Energy Storage Mater. 2 (2016) 76-106.
doi: 10.1016/j.ensm.2015.09.007
H. Wu, D. Zhuo, D. Kong, et al., Nat. Commun. 5 (2014) 5193.
doi: 10.1038/ncomms6193
P. Shi, T. Li, R. Zhang, et al., Adv. Mater. 31 (2019) 1807131.
doi: 10.1002/adma.201807131
D. Lv, J. Zheng, Q. Li, et al., Adv. Energy Mater. 5 (2015) 1402290.
doi: 10.1002/aenm.201402290
S.H. Chung, P. Han, R. Singhal, et al., Adv. Energy Mater. 5 (2015) 1500738.
doi: 10.1002/aenm.201500738
X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8 (2009) 500-506.
doi: 10.1038/nmat2460
W. Bao, L. Liu, C. Wang, et al., Adv. Energy Mater. (2018) 1702485.
T. Chen, Z. Zhang, B. Cheng, et al., J. Am. Chem. Soc. 139 (2017) 12710-12715.
doi: 10.1021/jacs.7b06973
F. Wu, J. Li, Y. Su, et al., Nano Lett. 16 (2016) 5488-5494.
doi: 10.1021/acs.nanolett.6b01981
G. Li, J. Sun, W. Hou, et al., Nat. Commun. 7 (2016) 10601.
doi: 10.1038/ncomms10601
F. Wu, S.X. Wu, R.J. Chen, et al., Chin. Chem. Lett. 20 (2009) 1255-1258.
doi: 10.1016/j.cclet.2009.04.036
Y.P. Xie, H.W. Cheng, W. Chai, et al., Chin. Chem. Lett. 28 (2017) 738-742.
doi: 10.1016/j.cclet.2016.07.030
Y.S. Su, A. Manthiram, Chem. Commun. 48 (2012) 8817-8819.
doi: 10.1039/c2cc33945e
J.Q. Huang, T.Z. Zhuang, Q. Zhang, et al., ACS Nano 9 (2015) 3002-3011.
doi: 10.1021/nn507178a
G. Zhou, S. Pei, L. Lu, et al., Adv. Mater. 26 (2014) 664-664.
doi: 10.1002/adma.201470027
Z. Xiao, Z. Yang, L. Wang, et al., Adv. Mater. 27 (2015) 2891-2898.
doi: 10.1002/adma.201405637
T.Z. Zhuang, J.Q. Huang, H.J. Peng, et al., Small 12 (2016) 381-389.
doi: 10.1002/smll.201503133
Y. Yang, C. Chen, J. Hu, et al., Chin. Chem. Lett. 29 (2018) 1777-1780.
doi: 10.1016/j.cclet.2018.08.013
L. Kong, X. Chen, B.Q. Li, et al., Adv. Mater. 30 (2018) 1705219.
doi: 10.1002/adma.201705219
J. Song, M. Zhou, R. Yi, et al., Adv. Funct. Mater. 24 (2015) 5904-5910.
C. Wang, H. Wu, Z. Chen, et al., Nat. Chem. 5 (2013) 1043-1049.
J. Liu, Q. Zhang, T. Zhang, et al., Adv. Funct. Mater. 25 (2015) 3599-3605.
doi: 10.1002/adfm.201500589
T.W. Kwon, Y.K. Jeong, E. Deniz, et al., ACS Nano 9 (2015) 11317-11324.
doi: 10.1021/acsnano.5b05030
B. Koo, H. Kim, Y. Cho, et al., Angew. Chem. Int. Ed. 124 (2012) 8892-8897.
doi: 10.1002/ange.201201568
W. Chen, T. Qian, J. Xiong, et al., Adv. Mater. 29 (2017) 1605160.
doi: 10.1002/adma.201605160
J. Liu, D.G.D. Galpaya, L. Yan, et al., Energy Environ. Sci. 10 (2017) 750-755.
doi: 10.1039/C6EE03033E
G. Li, C. Wang, W. Cai, et al., NPG Asia Mater. 8 (2016) e317.
doi: 10.1038/am.2016.138
H. Chen, C. Wang, Y. Dai, et al., Nano Energy 26 (2016) 43-49.
doi: 10.1016/j.nanoen.2016.04.052
P.D. Frischmann, Y. Hwa, E.J. Cairns, et al., Chem. Mater. 28 (2016) 7414-7421.
doi: 10.1021/acs.chemmater.6b03013
Q. Pang, X. Liang, C.Y. Kwok, et al., Adv. Energy Mater. 7 (2016) 1601630.
W.S. Zhi, Q. Zhang, W. Li, et al., Chem. Sci. 4 (2013) 3673-3677.
doi: 10.1039/c3sc51476e
W. Wahyudi, Z. Cao, P. Kumar, et al., Adv. Funct. Mater. 28 (2018) 1802244.
doi: 10.1002/adfm.201802244
P.V. Wright, Electrochim. Acta. 43 (1998) 1137-1143.
doi: 10.1016/S0013-4686(97)10011-1
T. Zhou, W. Lv, J. Li, et al., Energy Environ. Sci. 10 (2017) 1694-1703.
doi: 10.1039/C7EE01430A
M. Liu, D. Zhou, Y.B. He, et al., Nano Energy 22 (2016) 278-289.
doi: 10.1016/j.nanoen.2016.02.008
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Haiyan Wang , Hucheng Zhang , Lijing Wang , Yonghui Li , Tianhao Zhang , Zhansheng Lu , Hao Jiang , Chunzhong Li , Jianji Wang . Ti3C2Tx MXene-mediating near- and long-range electronic effect on atomically dispersed Co for efficient lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110373-. doi: 10.1016/j.cclet.2024.110373
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Jun Jiang , Tong Guo , Wuxin Bai , Mingliang Liu , Shujun Liu , Zhijie Qi , Jingwen Sun , Shugang Pan , Aleksandr L. Vasiliev , Zhiyuan Ma , Xin Wang , Junwu Zhu , Yongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565
Min Chen , Xinxin Li , Weijie Cai , Xinxin Han , Chuancong Zhou , Ke Zheng , Ruomeng Duan , Yanfei Zhao , Mengmeng Shao , Wenlong Wang , Kaihong Zheng , Bo Feng , Xiaodong Shi . Conductive nanofabrics as multifunctional interlayer of sulfur-loading cathode towards durable lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(9): 110712-. doi: 10.1016/j.cclet.2024.110712
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Tengfei Yang , Jingshuai Xiao , Xiao Sun , Yan Song , Chaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691
Na Li , Wenxue Wang , Peng Wang , Zhanying Sun , Xinlong Tian , Xiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731
Wenxue Wang , Longwei Bai , Na Li , Shuo Zhao , Xiaodong Shi , Peng Wang . Selenium-doping metal phosphides as bifunctional catalyst carrier for durable lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110938-. doi: 10.1016/j.cclet.2025.110938
Yan Wang , Huixin Chen , Fuda Yu , Shanyue Wei , Jinhui Song , Qianfeng He , Yiming Xie , Miaoliang Huang , Canzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Xiaoli CHEN , Zhihong LUO , Yuzhu XIONG , Aihua WANG , Xue CHEN , Jiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075
Qihou Li , Jiamin Liu , Fulu Chu , Jinwei Zhou , Jieshuangyang Chen , Zengqiang Guan , Xiyun Yang , Jie Lei , Feixiang Wu . Coordinating lithium polysulfides to inhibit intrinsic clustering behavior and facilitate sulfur redox conversion in lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(5): 110306-. doi: 10.1016/j.cclet.2024.110306
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
Yue Wang , Wenli Hu , Binchao Shi , He Jia , Shilin Mei , Chang-Jiang Yao . Design of carbon@WS2 host with graham condenser-like structure for tunable sulfur loading of lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(6): 110065-. doi: 10.1016/j.cclet.2024.110065
Xinyun Liu , Long Yuan , Xiaoli Peng , Shilan Li , Shengdong Jing , Shengjun Lu , Hua Lei , Yufei Zhang , Haosen Fan . MOF derived phosphorus doped cerium dioxide nanorods modified separator as efficient polysulfide barrier for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110369-. doi: 10.1016/j.cclet.2024.110369
Bo-Bo Zou , Hong-Jie Peng . Phase diagram as a lens for unveiling thermodynamics trends in lithium–sulfur batteries. Chinese Chemical Letters, 2025, 36(7): 110986-. doi: 10.1016/j.cclet.2025.110986
Chi Zhang , Zhilong Wang , Xinyue Wang , Yufei Zhang , Zhiguo Zhang , An Chen , Jinjin Li , Xitian Zhang , Lili Wu . Chip−like high−entropy oxide catalysts enhance fast sulfur evolution reaction for long−life lithium−sulfur batteries. Chinese Chemical Letters, 2025, 36(12): 110551-. doi: 10.1016/j.cclet.2024.110551
Xing Gao , Luofeng Wang , Jia Cheng , Jialiang Zhao , Xueli Liu . Manufacturing process of MOF-based separator for lithium sulfur batteries: A mini review. Chinese Chemical Letters, 2025, 36(8): 110247-. doi: 10.1016/j.cclet.2024.110247