Citation: Zhang Zhefan, Yan Jiyao, Ma Dengke, Sun Jianwei. Electrochemical synthesis of β-hydroxy-, β-alkoxy-, and β-carbonyloxy sulfones by vicinal difunctionalization of olefins[J]. Chinese Chemical Letters, ;2019, 30(8): 1509-1511. doi: 10.1016/j.cclet.2019.04.023 shu

Electrochemical synthesis of β-hydroxy-, β-alkoxy-, and β-carbonyloxy sulfones by vicinal difunctionalization of olefins

    * Corresponding author.
    E-mail address: sunjw@ust.hk (J. Sun)
    1These authors contributed equally to this work
  • Received Date: 15 February 2019
    Revised Date: 23 March 2019
    Accepted Date: 8 April 2019
    Available Online: 13 August 2019

Figures(6)

  • An electrochemical vicinal heterodifunctionalization of olefins for the synthesis of β-oxysulfones is described. With suitable choice of the conditions, including current, electrodes, and electrolyte, this oxidation reaction proceeded efficiently in an undivided cell without the use of a stoichiometric chemical oxidant. In addition to the previously established synthesis of β-hydroxysulfones in the presence of water, minor modification of this protocol by using either external alcohol nucleophiles or internal carboxylic acid nucleophile also led to the synthesis of β-alkoxysulfones, and β-sulfonyl lactones.
  • 加载中
    1. [1]

      (a) H.C. Kolb, M.S. VanNieuwenhze, K.B. Sharpless, Chem. Rev. 94 (1994) 2483-2547;
      (b) J. Rodriguez, J.P. Dulcère, Synthesis (1993) 1177-1205;
      (c) B.M. Trost, I. Fleming, M.F. Semmelhack, Comprehensive Organic Synthesis, Pergamon Press, Oxford, 1991;
      (d) R.I. McDonald, G. Liu, S.S. Stahl, Chem. Rev. 111 (2011) 2981-3019.

    2. [2]

      (a) Z. Yuan, H.Y. Wang, X. Mu, et al., J. Am. Chem. Soc. 137 (2015) 2468-2471;
      (b) H. Chen, A. Kaga, S. Chiba, Org. Biomol. Chem. 14 (2016) 5481-5485;
      (c) D.B. Bagal, G. Kachkovskyi, M. Knorn, et al., Angew. Chem. Int. Ed. 54 (2015) 6999-7002;
      (d) Y. An, D. Zheng, J. Wu, Chem. Commun. 50 (2014) 11746-11748;
      (e) D.F. Lu, C.L. Zhu, J.D. Sears, H. Xu, J. Am. Chem. Soc. 138 (2016) 11360-11367.

    3. [3]

      (a) J.E. Baldwin, Sulphones in Organic Synthesis, Vol. 10, Pergamon, 1993;
      (b) R.A. Fromtling, Drugs Future 14 (1989) 1165-1168;
      (c) S. Oida, Y. Tajima, T. Konosu, et al., Chem. Pharm. Bull. 48 (2000) 694-707;
      (d) H. Eto, Y. Kaneko, S. Takeda, et al., Chem. Pharm. Bull. 49 (2001) 173-782.

    4. [4]

      (a) Q. Lu, J. Zhang, F. Wei, et al., Angew. Chem. Int. Ed. 52 (2013) 7156-7159;
      (b) A. Kariya, T. Yamaguchi, T. Nobuta, et al., RSC Adv. 4 (2014) 13191-13194;
      (c) N. Taniguchi, J. Org. Chem. 80 (2015) 7797-7802;
      (d) K. Choudhuri, T.K. Achar, P. Mal, Adv. Synth. Catal. 359 (2017) 3566-3576;
      (e) Y. Wang, W. Jiang, C. Huo, J. Org. Chem. 82 (2017) 10628-10634;
      (f) T. Taniguchi, A. Idota, H. Ishibashi, Org. Biomol. Chem. 9 (2011) 3151-3153;
      (g) S.K. Pagire, S. Paria, O. Reiser, Org. Lett. 18 (2016) 2106-2109.

    5. [5]

      (a) A.L. Moure, R.G. Arrayás, J.C. Carretero, Chem. Commun. 47 (2011) 6701-6703;
      (b) A.S. Deeming, C.J. Russell, A.J. Hennessy, M.C. Willis, Org. Lett.16 (2014) 150-153;
      (c) N. Chumachenko, P. Sampson, Tetrahedron 62 (2006) 4540-4548;
      (d) S.N.Murthy, B. Madhav, V.P. Reddy, K.R. Rao, Y.V.D. Nageswar, Tetrahedron Lett. 50 (2009) 5009-5011.

    6. [6]

      F. Marken, M. Atobe, Modern Electrosynthetic Methods in Organic Chemistry, CRC Press, Taylor & Francis Group, 2019.

    7. [7]

      (a) J.C. Siu, G.S. Sauer, A. Saha, et al., J. Am. Chem. Soc. 140 (2018) 1251112510;
      (b) L. Zhang, G. Zhang, P. Wang, Y. Li, A. Lei, Org. Lett. 20 (2018) 7396-7399;
      (c) K.Y. Ye, G. Pombar, N. Fu, et al., J. Am. Chem. Soc. 140 (2018) 2438-3441;
      (d) M.W. Zheng, X. Yuan, Y.S. Cui, et al., Org. Lett. 20 (2018) 7784-7789;
      (e) C.Y. Cai, H.C. Xu, Nat. Commun. 9 (2018) 3551;
      (f) P. Xiong, H. Long, J. Song, et al., J. Am. Chem. Soc. 140 (2018) 16387-16391.

    8. [8]

      (a) C.K. Chan, N.C. Lo, P.Y. Chen, M.Y. Chang, Synthesis 49 (2017) 4469-4477;
      (b) Y.C. Luo, X.J. Pan, G.Q. Yuan, Tetrahedron 71 (2015) 2119-2123.

    9. [9]

      Y. Wang, L. Deng, J. Zhou, et al., Adv. Synth. Catal. 360(2018) 1060-1065.  doi: 10.1002/adsc.201701532

  • 加载中
    1. [1]

      Yaqi DengJian XueXiang WuShunying Liu . Highly regioselective electrochemical oxidative 2,1-azolization of alkenes with azoles and nucleophiles. Chinese Chemical Letters, 2025, 36(9): 110822-. doi: 10.1016/j.cclet.2025.110822

    2. [2]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    5. [5]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    6. [6]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    9. [9]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    10. [10]

      Junhua LiTianci ShenYahui ZhuangYu FuYian Shi . Pd-Catalyzed highly regioselective migratory hydroesterification of internal olefins with formates. Chinese Chemical Letters, 2025, 36(7): 110599-. doi: 10.1016/j.cclet.2024.110599

    11. [11]

      Shan-Shan LiJuan LuoShu-Nuo LiangDan-Na ChenLi-Ning ChenCheng-Xue PanPeng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424

    12. [12]

      Zhi-Lin WuRong-Nan YiChunlin Zhuang . Electrochemical synthesis strategy for the development of antitumor selenoheterocyclic compounds. Chinese Chemical Letters, 2025, 36(10): 111408-. doi: 10.1016/j.cclet.2025.111408

    13. [13]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    14. [14]

      Sadia RaniNajoua SbeiSeyfeddine RahaliSamina AslamTomas HardwickNisar Ahmed . Electrochemical synthesis: A green & powerful approach to modern organic synthesis and future directions. Chinese Chemical Letters, 2025, 36(11): 111216-. doi: 10.1016/j.cclet.2025.111216

    15. [15]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    16. [16]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    17. [17]

      Lei LiGuang YangTianbai XiongTingzhu DuanJia WangXin Wang . Metal-free click polymerization of thiols and chalcone-derived internal olefins in air to prepare functional clusteroluminescent polythioethers for dual-response fluorescent probe. Chinese Chemical Letters, 2025, 36(11): 111374-. doi: 10.1016/j.cclet.2025.111374

    18. [18]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    19. [19]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    20. [20]

      Shuai ChenAnzai ShiGuoqing YangPengfei XieFeng LiuYouai Qiu . Electrochemical demethoxyl-cyanation of methoxyarenes via SNAr. Chinese Chemical Letters, 2025, 36(9): 110810-. doi: 10.1016/j.cclet.2024.110810

Metrics
  • PDF Downloads(9)
  • Abstract views(1153)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return