Citation: Luo Xiao, Li Jin, Zhao Jie, Gu Luyan, Qian Xuhong, Yang Youjun. A general approach to the design of high-performance near-infrared (NIR) D-π-A type fluorescent dyes[J]. Chinese Chemical Letters, ;2019, 30(4): 839-846. doi: 10.1016/j.cclet.2019.03.012 shu

A general approach to the design of high-performance near-infrared (NIR) D-π-A type fluorescent dyes


  • Author Bio:




    Professor Youjun Yang got his bachelor's degree from the University of Science and Technology of China (USTC) and PhD from Louisiana State University (LSU) under the guidance of Prof. Robert M. Strongin, with a focus on xanthene and benzoxanthene synthesis. He then did postdoctoral study with Prof. Eric V. Anslyn in the University of Texas at Austin. In 2010, he started his independent career in the School of Pharmacy of East China University of Science and Technology (ECUST) in Shanghai. He was appointed as a full professor in 2015. The theme of his research is the development of dyes and probes for bioimaging and theranostics. His group has developed high-performance dyes (EC dyes) with absorption and emission wavelengths in the deep NIR spectral region (800 nm and beyond), novel Hill-type pH fluorescent probes (with a sharp acid-base transition width of ~0.5-1.2 pH unit), xanthene based potent antibiotic compounds (effective toward many high-priority drug-resistance pathogens), and novel molecular tools to study the implications of various substrates (NO/NO+, Hg2+/MeHg+, OONO-/ HOONO, Sarin, radicals, etc.) in human health and diseases. The awards he has received include the Excellent Young Scholar of the National Science Foundation of China (NSFC), the Czarnik Emerging Investigator award of the Molecular Sensors and Molecular Logic Gate symposium (MSMLG), the Rising-Star award of Shanghai Municipal of Science and Technology Commission (SMSCT), and the Presidential award of East China University of Science and Technology
  • * Corresponding authors at: State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
    E-mail addresses: xhqian@ecust.edu.cn (X. Qian), youjunyang@ecust.edu.cn (Y. Yang)
  • Received Date: 28 January 2019
    Revised Date: 26 February 2019
    Accepted Date: 28 February 2019
    Available Online: 7 April 2019

Figures(10)

  • Near infrared (NIR) absorbing and emitting dyes are sought after for their potentials in bioimaging and theranostic applications. They are typically not as stable as dyes absorbing and emitting in the visible spectral range, as the result of a reduced HOMO-LUMO band-gap. Also, they are not as efficient fluorescence emitters due to accelerated internal conversion kinetics. In addition, their large conjugative backbone render them high tendency to form aggregate and low aqueous solubility. In this tutorial, we have described a four-step approach for rational design of organic dyes with an overall high-performance to meet the rigorous requirements of biological applications. Also, some background regarding "NIR" is provided along with some recent breakthroughs of the field.
  • 加载中
    1. [1]

      J.V. Frangioni, Curr. Opin. Chem. Biol. 7(2003) 626-634.  doi: 10.1016/j.cbpa.2003.08.007

    2. [2]

      Q.T. Nguyen, E.S. Olson, T.A. Aguilera, et al., Proc. Natl. Acad. Sci. U. S. A. 107(2010) 4317-4322.  doi: 10.1073/pnas.0910261107

    3. [3]

      A.W. Czarnik, Chem. Biol. 2(1995) 423-428.  doi: 10.1016/1074-5521(95)90257-0

    4. [4]

      E. Haustein, P. Schwille, HFSP J. 1(2007) 169-180.  doi: 10.2976/1.2778852

    5. [5]

      J. Mei, Y. Huang, H. Tian, ACS Appl. Mater. Interfaces 10(2018) 12217-12261.  doi: 10.1021/acsami.7b14343

    6. [6]

      R. Weissleder, Science 312(2006) 1168-1171.  doi: 10.1126/science.1125949

    7. [7]

      M. Rudin, R. Weissleder, Nat. Rev. Drug Disc. 2(2003) 123-131.  doi: 10.1038/nrd1007

    8. [8]

      K. Pap, S. Plehati, I. Rajkovi c, D. Žigman, International Design Conference-Design, (2010), pp. 1857-1862.

    9. [9]

      BSI ISO 20473: 2007 Optics and Photonics. Spectral Bands, British Standards Institution (BSI) and International Organization for Standardisation (ISO), 2007 checked 2015.

    10. [10]

      C.M. Lin, S.M. Usama, K. Burgess, Molecules 23(2018) 2900.  doi: 10.3390/molecules23112900

    11. [11]

      M. Manley, Chem. Soc. Rev. 43(2014) 8200-8214.  doi: 10.1039/C4CS00062E

    12. [12]

      M. Kamper, H. Ta, N.A. Jensen, S.W. Hell, S. Jakobs, Nat. Commun. 9(2018) 4762.  doi: 10.1038/s41467-018-07246-2

    13. [13]

      Z.H. Lei, X.R. Li, X. Luo, et al., Angew. Chem. Int. Ed. 56(2017) 2979-2983.  doi: 10.1002/anie.201612301

    14. [14]

      Z.Y. Wang, Near-Infrared Organic Materials and Emerging Applications, CRC Press, New York, 2013. 

    15. [15]

      J.R. Hou, D. Jin, B. Chen, L.L. Si, Y. Li, Chin. Chem. Lett. 28(2017) 1875-1877.  doi: 10.1016/j.cclet.2017.06.017

    16. [16]

      M.S. Lin, B.A. Rasco, A.G. Cavinato, M. Al-Holy, Infrared Spectroscopy for Food Quality Analysis and Control, Elsevier Publishing, Burlington, MA, USA, 2009.

    17. [17]

      B.A. Kairdolf, A.M. Smith, T.H. Stokes, et al., Annu. Rev. Anal. Chem. 6(2013) 143-162.  doi: 10.1146/annurev-anchem-060908-155136

    18. [18]

      J. Qian, B.Z. Tang, Chemisty 3(2017) 56-91.
       

    19. [19]

      Z.Q. Guo, S. Park, J. Yoon, I. Shin, Chem. Soc. Rev. 43(2014) 16-29.  doi: 10.1039/C3CS60271K

    20. [20]

      K.Y. Zhang, Q. Yu, H.J. Wei, et al., Chem. Rev. 118(2018) 1770-1839.  doi: 10.1021/acs.chemrev.7b00425

    21. [21]

      R. Weissleder, M.J. Pittet, Nature 452(2008) 580-589.  doi: 10.1038/nature06917

    22. [22]

      J. Zhang, R.E. Campbell, A.Y. Ting, et al., Nat. Rev. Mol. Cell Biol. 3(2002) 906-918.  doi: 10.1038/nrm976

    23. [23]

      W.R. Zipfel, R.M. Williams, W.W. Webb, Nat. Biotechnol. 21(2003) 1369-1377.  doi: 10.1038/nbt899

    24. [24]

      B. Huang, M. Bates, X.W. Zhuang, Annu. Rev. Biochem. 78(2009) 993-1016.  doi: 10.1146/annurev.biochem.77.061906.092014

    25. [25]

      V. Ntziachristos, Annu. Rev. Biomed. Eng. 8(2006) 1-33.  doi: 10.1146/annurev.bioeng.8.061505.095831

    26. [26]

      D.W. Domaille, E.L. Que, C.J. Chang, Nat. Chem. Biol. 4(2008) 168-175.  doi: 10.1038/nchembio.69

    27. [27]

      J.H. Rao, A. Dragulescu-Andrasi, H.Q. Yao, Curr. Opin. Biotechnol. 18(2007) 17-25.  doi: 10.1016/j.copbio.2007.01.003

    28. [28]

      S.L. Luo, E.L. Zhang, Y.P. Su, T.M. Cheng, C.M. Shi, Biomaterials 32(2011) 7127-7138.  doi: 10.1016/j.biomaterials.2011.06.024

    29. [29]

      E.A. Specht, E. Braselmann, A.E. Palmer, Ann. Rev. Physiol. 79(2017) 93-117.  doi: 10.1146/annurev-physiol-022516-034055

    30. [30]

      S.L. Jacques, Phys. Med. Biol. 58(2013) R37-R61.  doi: 10.1088/0031-9155/58/11/R37

    31. [31]

      L.Y. Shi, L.A. Sordillo, A. Rodríguez-Contreras, R. Alfano, J. Biophotonics 9(2016) 38-43.  doi: 10.1002/jbio.201500192

    32. [32]

      Z.P. Qin, J.C. Bischof, Chem. Soc. Rev. 41(2012) 1191-1217.  doi: 10.1039/C1CS15184C

    33. [33]

      K. Welsher, Z. Liu, S.P. Sherlock, et al., Nat. Nanotechnol. 4(2009) 773-780.  doi: 10.1038/nnano.2009.294

    34. [34]

      P.Y. Wang, Y. Fan, L.F. Lu, et al., Nat. Commun. 9(2018) 2898.  doi: 10.1038/s41467-018-05113-8

    35. [35]

      J.Y. Zhao, D. Zhong, S.B. Zhou, Mater. Chem. B 6(2018) 349-365.

    36. [36]

      A.L. Antaris, H. Chen, K. Cheng, et al., Nat. Mater. 15(2016) 235-242.  doi: 10.1038/nmat4476

    37. [37]

      S. Zhu, Z. Hu, R. Tian, et al., Adv. Mater. 30(2018) 1802546.  doi: 10.1002/adma.v30.34

    38. [38]

      V.J. Pansare, S. Hejazi, W.J. Faenza, R.K. Prud'homme, Chem. Mater. 24(2012) 812-827.  doi: 10.1021/cm2028367

    39. [39]

      E. Hemmer, A. Benayas, F. Légaré, F. Vetrone, Nanoscale Horiz. 1(2016) 168-184.  doi: 10.1039/C5NH00073D

    40. [40]

      J. Gao, X. Chen, Z. Cheng, Curr. Top Med. Chem. 10(2010) 1147-1157.  doi: 10.2174/156802610791384162

    41. [41]

      G. Qian, Z.Y. Wang, Chem. Asian J. 5(2010) 1006-1029.  doi: 10.1002/asia.200900596

    42. [42]

      M. Baloban, D.M. Shcherbakova, S. Pletnev, et al., Chem. Sci. 8(2017) 4546-4557.  doi: 10.1039/C7SC00855D

    43. [43]

      J. Piccard, Ber. Dtsch. Chem. Ges. 46(1913) 1843-1860.

    44. [44]

      A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, G.B. Behera, Chem. Rev. 100(2000) 1973-2012.  doi: 10.1021/cr990402t

    45. [45]

      S. Daehne, Ute. Resch-Genger, O.S. Wolfbeis, Near-Infrared Dyes for High Technology Applications, Springer Science & Business Media, Berlin/Heidelberg, Germany, 2012.

    46. [46]

      J. Yao, M. Yang, Y.X. Duan, Chem. Rev. 114(2014) 6130-6178.  doi: 10.1021/cr200359p

    47. [47]

      M.V. Marshall, J.C. Rasmussen, I. Tan, et al., Open Surg. Oncol. J. 2(2010) 12-25.  doi: 10.2174/1876504101002020012

    48. [48]

      I.J. Fox, E.H. Wood, Proc. Staff Meet. Mayo Clin. 35(1960) 732-744.
       

    49. [49]

      Z. Starosolski, R. Bhavane, K.B. Ghaghada, et al., PLoS One 12(2017) e0187563.  doi: 10.1371/journal.pone.0187563

    50. [50]

      J.T. Alander, I. Kaartinen, A. Laakso, et al., Int. J. Biomed. Imaging 2012(2012) 940585.
       

    51. [51]

      M.L. Landsman, G. Kwant, G.A. Mook, W.G. Zijlstra, J. Appl. Physiol. 40(1976) 575-583.  doi: 10.1152/jappl.1976.40.4.575

    52. [52]

      W. Holzer, M. Mauerer, A. Penzkofer, et al., J. Photochem. Photobiol. B Biol. 47(1998) 155-164.  doi: 10.1016/S1011-1344(98)00216-4

    53. [53]

      S. Yoneya, T. Saito, Y. Komatsu, et al., Invest. Ophthalmol. Visual Sci. 39(1998) 1286-1290.
       

    54. [54]

      E. Engel, T. Schraml, T. Maisch, et al., Invest. Ophthalmol. Visual Sci. 49(2008) 1777-1783.  doi: 10.1167/iovs.07-0911

    55. [55]

      D.H. Oushiki, H. Kojima, T. Terai, et al., J. Am. Chem. Soc. 132(2010) 2795-2801.  doi: 10.1021/ja910090v

    56. [56]

      W. Sun, S.G. Guo, C. Hu, J.L. Fan, X.J. Peng, Chem. Rev. 116(2016) 7768-7817.  doi: 10.1021/acs.chemrev.6b00001

    57. [57]

      M.T. Sun, H. Yu, H.J. Zhu, et al., Anal. Chem. 86(2014) 671-677.  doi: 10.1021/ac403603r

    58. [58]

      K. Kundu, S.F. Knight, N. Willett, et al., Angew. Chem. Int. Ed. 48(2009) 299-303.  doi: 10.1002/anie.v48:2

    59. [59]

      X.T. Jia, Q.Q. Chen, Y.F. Yang, et al., J. Am. Chem. Soc.138(2016) 10778-10781.  doi: 10.1021/jacs.6b06398

    60. [60]

      G.T. Dempsey, M. Bates, W.E. Kowtoniuk, et al., J. Am. Chem. Soc. 131(2009) 18192-18193.  doi: 10.1021/ja904588g

    61. [61]

      H. Niu, X. Jiang, J. He, et al., Tetrahedron Lett. 50(2009) 6668-6671.  doi: 10.1016/j.tetlet.2009.09.079

    62. [62]

      L. Yuan, W.Y. Lin, K.B. Zheng, L.W. He, W.M. Huang, Chem. Soc. Rev. 42(2013) 622-661.  doi: 10.1039/C2CS35313J

    63. [63]

      M.Y. Li, P.C. Cui, K. Li, et al., Chin. Chem. Lett. 29(2018) 992-994.  doi: 10.1016/j.cclet.2017.11.011

    64. [64]

      Y. Yang, H. Wang, Y.L. Wei, et al., Chin. Chem. Lett. 28(2017) 2023-2026.  doi: 10.1016/j.cclet.2017.08.051

    65. [65]

      S. Dähne, Science 199(1978) 1163-1167.  doi: 10.1126/science.199.4334.1163

    66. [66]

      J. Griffiths, Colour and Constitution of Organic Molecules, Academic Press, London, 1976.

    67. [67]

      R.L.M. Allen, Colour Chemistry, 1st ed., Appleton-Century-Crofts, New York, 1971.

    68. [68]

      J. Clayden, N. Greeves, S. Warren, Organic Chemistry, 2nd ed., Oxford University Press, 2001.

    69. [69]

      R.L. Christensen, A. Faksh, J.A. Meyers, et al., J. Phys. Chem. A 108(2004) 8229-8236.  doi: 10.1021/jp048421g

    70. [70]

      J. Rissler, Chem. Phys. Lett. 395(2004) 92-96.  doi: 10.1016/j.cplett.2004.07.058

    71. [71]

      C.B. Gorman, E.J. Ginsburg, S.R. Marder, R.H. Grubbs, Angew. Chem. Int. Ed. 28(1989) 1571-1574.
       

    72. [72]

      K. Mullen, G. Wegner, Electronic Materials: The Oligomer Approach, WileyVCH, Berlin, 1998.

    73. [73]

      R. Duval, C. Duplaisb, Nat. Prod. Rep. 34(2017) 161-193.  doi: 10.1039/C6NP00111D

    74. [74]

      W.P. Chen, R.F. Chen, Q.P. Liu, Y. He, K. He, Chem. Sci. 8(2017) 4917-4925.  doi: 10.1039/C7SC00475C

    75. [75]

      J.M. Gao, S.X. Yang, J.C. Qin, Chem. Rev. 113(2013) 4755-4811.  doi: 10.1021/cr300402y

    76. [76]

      J. Bendig, U. Schedler, T. Harder, et al., J. Photochem. Photobiol. A 91(1995) 53-57.  doi: 10.1016/1010-6030(95)04108-R

    77. [77]

      S.A. Tikhonov, V.I. Vovna, N.A. Gelfand, et al., J. Phys. Chem. A 120(2016) 7361-7369.  doi: 10.1021/acs.jpca.6b07242

    78. [78]

      A. Chaudhuri, Y. Venkatesh, K.K. Behara, N.D.P. Singh, Org. Lett. 19(2017) 1598-1601.  doi: 10.1021/acs.orglett.7b00416

    79. [79]

      S. Imazeki, A. Mukoh, T. Yoneyama, M. Kaneko, Mol. Cryst. Liq. Cryst. 145(1987) 79-93.  doi: 10.1080/00268948708080215

    80. [80]

      Y.M. Shen, Z.H. Shang, Y.H. Yang, et al., J. Org. Chem. 80(2015) 5906-5911.  doi: 10.1021/acs.joc.5b00242

    81. [81]

      Y. Xiao, F.Y. Liu, Z. Chen, et al., Chem. Commun. 51(2015) 6480-6488.  doi: 10.1039/C4CC09846C

    82. [82]

      A. Treibs, K. Jacob, Justus Liebigs Ann. Chem. 699(1966) 153-167.

    83. [83]

      A. Schmitt, B. Hinkeldey, M. Wild, G. Jung, J. Fluoresc. 19(2009) 755-758.  doi: 10.1007/s10895-008-0446-7

    84. [84]

      M.Y. Fu, Y. Xiao, X.H. Qian, D.F. Zhao, Y.F. Xu, Chem. Commun.15(2008) 1780-1782.
       

    85. [85]

      G. Sathyamoorthi, M.L. Soong, T.W. Ross, J.H. Boyer, Heteroat. Chem. 4(1993) 603-608.

    86. [86]

      A.K.-Y. Jen, Y.Q. Liu, L.X. Zheng, et al., Adv. Mater. 11(1999) 452-455.
       

    87. [87]

      Y.Y. Cheng, G.C. Li, Y. Liu, et al., J. Am. Chem. Soc. 138(2016) 4730-4738.  doi: 10.1021/jacs.5b09241

    88. [88]

      W.M. Liu, B.J. Zhou, G. Niu, et al., ACS Appl. Mater. Interfaces 7(2015) 7421-7427.  doi: 10.1021/acsami.5b01429

    89. [89]

      L. Yuan, W.Y. Lin, Y.T. Yang, H. Chen, J. Am. Chem. Soc. 134(2012) 1200-1211.  doi: 10.1021/ja209292b

    90. [90]

      M. Sibrian-Vazquez, J.O. Escobedo, M. Lowry, R.M. Strongin, Pure Appl. Chem. 84(2012) 2443-2456.  doi: 10.1351/PAC-CON-11-11-06

    91. [91]

      E. Azuma, N. Nakamura, K. Kuramochi, et al., J. Org. Chem. 77(2012) 3492-3500.  doi: 10.1021/jo300177b

    92. [92]

      A.B. Descalzo, K. Rurack, Chem. Eur. J. 15(2009) 3173-3185.  doi: 10.1002/chem.v15:13

    93. [93]

      R.S. Lepkowicz, C.M. Cirloganu, O.V. Przhonska, et al., Chem. Phys. 306(2004) 171-183.  doi: 10.1016/j.chemphys.2004.07.021

    94. [94]

      A. Treibs, K. Jacob, Angew. Chem. Int. Ed. 4(1965) 694-694.
       

    95. [95]

      X.Z. Song, J.W. Foley, Dyes Pigm. 78(2008) 60-64.  doi: 10.1016/j.dyepig.2007.10.006

    96. [96]

      B.H. Li, L.F. Lu, M.Y. Zhao, Z.H. Lei, F. Zhang, Angew. Chem. Int. Ed. 57(2018) 7483-7487.  doi: 10.1002/anie.201801226

    97. [97]

      B.L. Guennic, D. Jacquemin, Acc. Chem. Res. 48(2015) 530-537.  doi: 10.1021/ar500447q

    98. [98]

      K.Z. Gu, Y.S. Xu, H. Li, et al., J. Am. Chem. Soc. 138(2016) 5334-5340.  doi: 10.1021/jacs.6b01705

    99. [99]

      N. Karton-Lifshin, L. Albertazzi, M. Bendikov, et al., J. Am. Chem. Soc. 134(2012) 20412-20420.  doi: 10.1021/ja308124q

    100. [100]

      H.Y. Li, X.H. Li, W. Shi, Y.H. Xu, H.M. Ma, Angew. Chem. Int. Ed. 57(2018) 12830-12834.  doi: 10.1002/anie.201808400

    101. [101]

      L. Strekowski, Heterocyclic Polymethine Dyes: Synthesis, Properties and Applications, Springer-Verlag, Berlin, 2008.

    102. [102]

      K. Umezawa, Y. Nakamura, H. Makino, D. Citterio, K. Suzuki, J. Am. Chem. Soc. 130(2008) 1550-1551.  doi: 10.1021/ja077756j

    103. [103]

      M. Irie, Chem. Rev. 100(2000) 1685-1716.  doi: 10.1021/cr980069d

    104. [104]

      G.L. Niu, W.M. Liu, B.J. Zhou, et al., J. Org. Chem. 81(2016) 7393-7399.  doi: 10.1021/acs.joc.6b00981

    105. [105]

      D. Wu, Y.Z. Shen, J.H. Chen, et al., Chin. Chem. Lett. 28(2017) 1979-1982.  doi: 10.1016/j.cclet.2017.07.004

    106. [106]

      F.L. Song, R. Liang, J.D. Deng, Z.W. Liu, X.J. Peng, Chin. Chem. Lett. 28(2017) 1997-2000.  doi: 10.1016/j.cclet.2017.08.023

    107. [107]

      Z.H. Lei, Z.H. Zeng, X.H. Qian, Y.J. Yang, Chin. Chem. Lett. 28(2017) 2001-2004.  doi: 10.1016/j.cclet.2017.09.023

    108. [108]

      P. Ning, W.J. Wang, M. Chen, Y. Feng, X.M. Meng 28(2017) 1943-1951.
       

    109. [109]

      X.T. Jia, Q.Q. Chen, Y.F. Yang, et al., J. Am. Chem. Soc.138(2016) 10778-10781.  doi: 10.1021/jacs.6b06398

    110. [110]

      A.P. Gorka, R.R. Nani, J.J. Zhu, S. Mackem, M.J. Schnermann, J. Am. Chem. Soc. 136(2014) 14153-14159.  doi: 10.1021/ja5065203

    111. [111]

      X. Jing, C. He, L. Zhao, C.Y. Duan, Acc. Chem. Res. 52(2019) 100-109.  doi: 10.1021/acs.accounts.8b00463

    112. [112]

      S.Y. Hsueh, C.C. Lai, Y.H. Liu, et al., Org. Lett. 9(2007) 4523-4526.  doi: 10.1021/ol702050w

    113. [113]

      A.G. Cheetham, T.D.W. Claridge, H.L. Anderson, Org. Biomol. Chem. 5(2007) 457-462.  doi: 10.1039/b616621k

    114. [114]

      E.J.F. Klotz, T.D.W. Claridge, H.L. Anderson, J. Am. Chem. Soc. 128(2006) 15374-15375.  doi: 10.1021/ja0665139

    115. [115]

      E. Arunkumar, C.C. Forbes, B.C. Noll, B.D. Smith, J. Am. Chem. Soc. 127(2005) 3288-3289.  doi: 10.1021/ja042404n

    116. [116]

      Z.M. Tao, G.S. Hong, C. Shinji, et al., Angew. Chem. Int. Ed. 125(2013) 13240-13244.  doi: 10.1002/ange.201307346

    117. [117]

      S. Hecht, J.M.J. Frechet, Angew. Chem. Int. Ed. 40(2001) 74-91.  doi: 10.1002/1521-3773(20010105)40:1<>1.0.CO;2-6

    118. [118]

      K. Yanagi, K. Iakoubovskii, H. Matsui, et al., J. Am. Chem. Soc. 129(2007) 4992-4997.  doi: 10.1021/ja067351j

    119. [119]

      X.M. Wu, S. Chang, X.R. Sun, Chem. Sci. 4(2013) 1221-1228.  doi: 10.1039/c2sc22035k

    120. [120]

      J.E.H. Buston, J.R. Young, H.L. Anderson, Chem. Commun.11(2000) 905-906.
       

    121. [121]

      M. Cooper, A. Ebner, M. Briggs, et al., J. Fluoresc. 14(2004) 145-150.  doi: 10.1023/B:JOFL.0000016286.62641.59

    122. [122]

      C.Y. Fan, J.C. Hsiang, R.M. Dickson, ChemPhysChem 13(2012) 1023-1029.  doi: 10.1002/cphc.201100671

    123. [123]

      B. Li, Z. He, H. Zhou, H. Zhang, T. Cheng, Chin. Chem. Lett. 28(2017) 1929-1934.  doi: 10.1016/j.cclet.2017.08.055

    124. [124]

      J.L. Bricks, A.D. Kachkovskii, Y.L. Slominskii, A.O. Gerasov, S.V. Popov, Dyes Pigm. 121(2015) 238-255.  doi: 10.1016/j.dyepig.2015.05.016

    125. [125]

      M.S. Michie, R. Götz, C. Franke, et al., J. Am. Chem. Soc. 139(2017) 12406-12409.  doi: 10.1021/jacs.7b07272

    126. [126]

      M.L. Korb, Y.E. Hartman, J. Kovar, et al., J. Surg. Res. 188(2014) 119-128.  doi: 10.1016/j.jss.2013.11.1089

    127. [127]

      A. Baeyer, Ber. Dtsch. Chem. Ges. 4(1871) 555-558.

    128. [128]

      Y.J. Yang, M. Lowry, X.Y. Xu, et al., Proc. Natl. Acad. Sci. U. S. A. 105(2008) 8829-8834.  doi: 10.1073/pnas.0710341105

    129. [129]

      J.B. Grimm, A.J. Sung, W.R. Legant, et al., ACS Chem. Biol. 8(2013) 1303-1310.  doi: 10.1021/cb4000822

    130. [130]

      T. Egawa, Y. Koide, K. Hanaoka, et al., Chem. Commun. 47(2011) 4162-4164.  doi: 10.1039/c1cc00078k

    131. [131]

      A. Fukazawa, S. Suda, M. Taki, et al., Chem. Commun. 52(2016) 1120-1123.  doi: 10.1039/C5CC09345G

    132. [132]

      J.B. Grimm, B.P. English, J.J. Chen, et al., Nat. Methods 12(2015) 244-250.  doi: 10.1038/nmeth.3256

    133. [133]

      L. Wu, K. Burgess, Org. Lett. 10(2008) 1779-1782.  doi: 10.1021/ol800526s

    134. [134]

      Y. Koide, Y. Urano, K. Hanaoka, T. Terai, T. Nagano, ACS Chem. Biol. 6(2011) 600-608.  doi: 10.1021/cb1002416

    135. [135]

      C. Aaron, C.C. Barker, J. Chem. Soc. (1963) 2655-2662.
       

    136. [136]

      X.Q. Zhou, R. Lai, J.R. Beck, H. Li, C.I. Stains, Chem. Commun. 52(2016) 12290-12293.  doi: 10.1039/C6CC05717A

    137. [137]

      J. Liu, Y.Q. Sun, H.X. Zhang, et al., ACS Appl. Mater. Interfaces 8(2016) 22953-22962.  doi: 10.1021/acsami.6b08338

    138. [138]

      M. Sauer, K.T. Han, R. Muller, et al., J. Fluoresc. 5(1995) 247-261.  doi: 10.1007/BF00723896

    139. [139]

      M. Sauer, K.T. Han, R. Muller, et al., J. Fluoresc. 3(1993) 131-139.  doi: 10.1007/BF00862730

    140. [140]

      O.O. Abugo, R. Nair, J.R. Lakowicz, Anal. Biochem. 279(2000) 142-150.  doi: 10.1006/abio.2000.4486

    141. [141]

      A.V. Anzalone, T.Y. Wang, Z.X. Chen, V.W. Cornish, Angew. Chem. Int. Ed. 52(2013) 650-654.  doi: 10.1002/anie.201205369

    142. [142]

      J. Arden-Jacob, J. Frantzeskos, N.U. Kemnitzer, A. Zilles, K.H. Drexhage, Spectrochimica Acta Part A 57(2001) 2271-2283.  doi: 10.1016/S1386-1425(01)00476-0

  • 加载中
    1. [1]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    2. [2]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    3. [3]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    4. [4]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    5. [5]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    6. [6]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    7. [7]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    8. [8]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    9. [9]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    10. [10]

      Yuyang ZhouZiwang MaoJing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622

    11. [11]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    12. [12]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    13. [13]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    14. [14]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    15. [15]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    16. [16]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    17. [17]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    18. [18]

      Dandan TangNingge XuYuyang FuWei PengJinsheng WuHeng LiuFabiao Yu . Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury. Chinese Chemical Letters, 2025, 36(5): 110082-. doi: 10.1016/j.cclet.2024.110082

    19. [19]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    20. [20]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

Metrics
  • PDF Downloads(7)
  • Abstract views(1241)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return