Citation: Li Chaojie, Wei Zhangwen, Pan Mei, Deng Haiying, Jiang Jijun, Su Chengyong. Structural tuning of coordination polymers by 4-connecting metal node and secondary building process[J]. Chinese Chemical Letters, ;2019, 30(6): 1297-1301. doi: 10.1016/j.cclet.2019.02.001 shu

Structural tuning of coordination polymers by 4-connecting metal node and secondary building process

    * Corresponding author.
    E-mail address: panm@mail.sysu.edu.cn (M. Pan)
  • Received Date: 15 January 2019
    Revised Date: 28 January 2019
    Accepted Date: 2 February 2019
    Available Online: 4 June 2019

Figures(5)

  • Five transition metal coordination polymers, {[Cu(4-pmntd)2(NO3)2]·2CHCl3}n(1), {[Cu(4-pmntd)2(NO3)2]·3C7H8}n (2), {[Cu(4-pmntd)2(CF3SO3)(H2O)]·CF3SO3·H2O·CH3OH}n (3), [Cd(4-pmntd)2]n·nSiF6·x(CH3OH)·y(CHCl3) (4)and[Zn(4-pmntd)2(CF3SO3)2]n·χ(solvent) (5), have been obtained from a ditopic ligand, N, N'-bis(4-pyridylmethyl)naphthalene diimide (4-pmntd). Either sql-or dia-structures are generated from four connecting coordination nodes of the metal centers. While delicate interpenetration and structural tuning in these complexes is achieved by the different conformations and spatially extending geometries adopted by the ligand and "secondary building process" induced by pillar-like anions.
  • 加载中
    1. [1]

      (a) W.P. Lustig, S. Mukherjee, N.D. Rudd, et al., Chem. Soc. Rev. 46 (2017) 3242-3285;
      (b) Y. Zhang, S. Yuan, G. Day, et al., Coord. Chem. Rev. 354 (2018) 28-45;
      (c) M. Pan, K. Wu, J.H. Zhang, C.Y. Su, Coord. Chem. Rev. 378 (2017) 333-349;
      (d) M. Pan, W.M. Liao, S.Y. Yin, S.S. Sun, C.Y. Su, Chem. Rev. 118 (2018) 8889-8935.

    2. [2]

      (a) M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 112 (2012) 1196-1231; (b) L.Q. Ma, C. Abney, W.B. Lin, Chem. Soc. Rev. 38 (2009) 1248-1256; (c) K. Sumida, D.L. Rogow, J.A. Mason, et al., Chem. Rev. 112 (2012) 724-781.

    3. [3]

      (a) A.K. Chaudhari, H.J. Kim, I. Han, J.C. Tan, Adv. Mater. 29 (2017) 1701463;
      (b) L. Chen, J.W. Ye, H.P. Wang, et al., Nat. Commun. 8 (2017) 15985; (c) W.M. Liao, J.H. Zhang, S.Y. Yin, et al., Nat. Commun. 9 (2018) 2401.

    4. [4]

      (a) S.Y. Hao, S.X. Hou, K.Van Hecke, G.H. Cui, Dalton Trans. 46 (2017) 1951-1964;
      (b) T.K. Maji, K. Uemura, H. C. Chang, R.Matsuda, S. Kitagawa, Angew.Chem. Int. Ed. 43 (2004) 3269-3272.

    5. [5]

      (a) R. Liang, Y.K. Guo, Y.T. Wang, X.P. Xuan, Inorg. Chim. Acta 471 (2018) 50-56;
      (b) K. Takaoka, M. Kawano, M. Tominaga, M. Fujita, Angew. Chem. Int. Ed. 44 (2005) 2151-2154.

    6. [6]

      (a) S.R. Zheng, S.Y. Yin, M. Pan, et al., Inorg. Chem. Commun. 55 (2015) 116-119;
      (b) M. Pan, B.B. Du, Y.X. Zhu, et al., Chem.-Eur. J. 22 (2016) 2440-2451;
      (c) S.L. Cai, M. Pan, S.R. Zheng, et al., CrystEngComm 14 (2012) 2308-2315.

    7. [7]

      (a) L. Carlucci, G. Ciani, D.M. Proserpio, S. Rizzato, Chem.-Eur. J. 8 (2002) 1519-1526;
      (b) P. Mondal, B. Dey, S. Roy, et al., Cryst. Growth Des. 18 (2018) 6211-6220.

    8. [8]

      a) S. Liu, M. Guo, Y. Sun, et al., Inorg. Chim. Acta 474 (2018) 73-80;
      (b) R.B. Lin, S. Xiang, B. Li, et al., Isreal J. Chem. 58 (2018) 949-961.

    9. [9]

      S. Hu, K.H. He, M.H. Zeng, H.H. Zou, Y.M. Jiang, Inorg. Chem. 47 (2008) 5218-5224.  doi: 10.1021/ic800050u

    10. [10]

      H.D. Mai, I. Lee, S. Lee, H. Yoo, Eur. J. Inorg. Chem. 31 (2017) 3736-3743.

    11. [11]

      (a) Z. Han, W. Shi, P. Cheng, Chin. Chem. Lett. 29 (2018) 819-822;
      (b) T. Xia, J. Wang, K. Jiang, et al., Chin. Chem. Lett. 29 (2018) 861-864;
      (c) W.H. Wang, Q. Gao, A.L. Li, et al., Chin. Chem. Lett. 29 (2018) 336-338.

    12. [12]

      (a) M. Pan, Y.X. Zhu, K. Wu, et al., Angew. Chem. Int. Ed. 56 (2017) 14582-14586;
      (b) W.M. Liao, J.H. Zhang, Z. Wang, et al., J. Mater. Chem. A 6 (2018) 11337-11345.

    13. [13]

      (a) S.R. Zheng, M. Pan, K. Wu, et al., Cryst. Growth Des. 15 (2015) 625-634;
      (b) Y.X. Zhu, Z.W. Wei, M. Pan, et al., Dalton Trans. 45 (2016) 943-950;
      (c) H.Y. Deng, J.R. He, M. Pan, L. Li, C.Y. Su, CrystEngComm 11 (2009) 909-917;
      (d) H.J. Yu, Z.M. Liu, S.Y. Yin, et al., Inorg. Chem. Commun. 86 (2017) 223-226;
      (e) H.J. Yu, Z.M. Liu, M. Pan, et al., Eur. J. Inorg. Chem. 1 (2018) 80-85.

    14. [14]

      A.L. Spek, J. Appl. Cryst. 36 (2003) 7-13.  doi: 10.1107/S0021889802022112

    15. [15]

      (a) L. Yang, X. Cui, Y. Zhang, Q. Yang, H. Xing, J. Mater. Chem. A 6 (2018) 24452-24458;
      (b) D.T. Vodak, M.E. Braun, J. Kim, M. Eddaoudi, O.M. Yaghi, Chem. Commun. (2001) 2534-2535;
      (c) D. Sun, R. Cao, Y. Sun, et al., Chem. Commun. (2003) 1528-1529.

  • 加载中
    1. [1]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    2. [2]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    3. [3]

      Yuting FuHaoran WangNan LiLujiao MaoXusheng WangQipeng LiJinjie Qian . Pt inclusion effect on Ni-ABDC-derived PtNi-carbon nanomaterials for hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 110890-. doi: 10.1016/j.cclet.2025.110890

    4. [4]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    5. [5]

      Kailu GuoJinzhi JiaHuijiao WangZiyu HaoYinjian ChenKe ShiHaixia WuCailing Xu . Structural tuning and reconstruction of CeO2-coupled nickel selenides for robust water oxidation. Chinese Chemical Letters, 2025, 36(8): 110888-. doi: 10.1016/j.cclet.2025.110888

    6. [6]

      Xiaonan LIHui HANYihan ZHANGJing XIONGTingting GUOJuanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376

    7. [7]

      Gongxi LiJun JinJunxuan TuHaoguo YueYing WangXiaohui JiaWeiyuan YinZhenglin HanYuxuan DengChunfeng ShiYonggang Zhen . Intrinsically stretchable polymer semiconductors synergistically constructed by hydrogen bonds and metal coordination. Chinese Chemical Letters, 2025, 36(12): 111716-. doi: 10.1016/j.cclet.2025.111716

    8. [8]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    9. [9]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    10. [10]

      Yang LIUJin TONGShuyan YU . Co(Ⅱ) coordination polymers: Structural characterization and fluorescence sensing of Al3+ in aqueous. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2399-2408. doi: 10.11862/CJIC.20250114

    11. [11]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    14. [14]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    15. [15]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    16. [16]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    17. [17]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    18. [18]

      Wanting CHENChufei MIAOYan LIUBobi ZHENGXiaoyu ZHENGHan XUJumei TIAN . Syntheses, characterization, and luminescence properties of Yb(Ⅲ)-based one-dimensional chain coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1672-1680. doi: 10.11862/CJIC.20250013

    19. [19]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    20. [20]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

Metrics
  • PDF Downloads(2)
  • Abstract views(1151)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return