Citation: Liu Ran, Zhang Yuxue, Wu Wanhua, Liang Wenting, Huang Qinfei, Yu Xingke, Xu Wei, Zhou Dayang, Selvapalam Narayanan, Yang Cheng. Temperature-driven braking of γ-cyclodextrin-curcubit[6]uril-cowheeled [4]rotaxanes[J]. Chinese Chemical Letters, ;2019, 30(3): 577-581. doi: 10.1016/j.cclet.2018.12.002 shu

Temperature-driven braking of γ-cyclodextrin-curcubit[6]uril-cowheeled [4]rotaxanes

    * Corresponding author.
    E-mail address: yangchengyc@scu.edu.cn (C. Yang)
  • Received Date: 8 October 2018
    Revised Date: 7 November 2018
    Accepted Date: 3 December 2018
    Available Online: 7 March 2018

Figures(7)

  • Several cyclodextrin-cucurbit[6]uril-cowheeled [4]rotaxanes were synthesized through the cucurbit[6] uril-templated azide-alkyne 1, 3-dipolar cycloaddition. The intramolecular interaction between the aromatic axle and the capping groups of cyclodextrin moieties was investigated by UV-vis, fluorescence, circular dichroism and NMR spectroscopic studies. The rotational kinetic of the wheel around the axle can be manipulated by adjusting the temperature. The capping group apparently slowed down the rotation of the wheel, playing a role of the brake, and lowering the temperature can stop the rotation of the wheel on the NMR timescale.
  • 加载中
    1. [1]

      (a) V. Balzani, A. Credi, F.M. Raymo, J.F. Stoddart, Angew. Chem. Int. Ed. 39 (2000) 3348-3391;
      (b) J.P. Sauvage, C. Dietrich-Buchecker, Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology, John Wiley & Sons, Weinheim, 1999.

    2. [2]

      (a) N. Koumura, R.W. Zijlstra, R.A. Delden, et al., Nature 401 (1999) 152-155;
      (b) J. Conyard, A. Cnossen, W.R. Browne, et al., J. Am. Chem. Soc. 136 (2014) 9692-9700;
      (c) J.P. Collin, F. Durola, P. Mobian, et al., Eur. J. Inorg. Chem. (2007) 2420-2425.

    3. [3]

      (a) E. Busseron, C. Romuald, F. Coutrot, Chem.-Eur. J. 16 (2010) 10062-10073;
      (b) T.R. Kelly, Acc. Chem. Res. 34 (2001) 514-522;
      (c) L.E. Harrington, L.S. Cahill, M.J. McGlinchey, Organometallics 23 (2004) 2884-2891;
      (d) D. Zhang, Q. Zhang, J.H. Su, et al., Chem. Commun. (2009) 1700-1702;
      (e) A. Faulkner, T.V. Leeuwen, B.L. Feringa, et al., J. Am. Chem. Soc. 138 (2016) 1359-1360;
      (f) W. Wu, S. Song, X. Cui, et al., Chin. Chem. Lett. 29 (2018) 95-98;
      (g) J. Yao, W. Wu, W. Liang, et al., Angew. Chem. Int. Ed. 56 (2017) 6869-6873.

    4. [4]

      (a) Y. Wang, X. Qiao, W. Li, et al., Anal. Chim. Acta 650 (2009) 124-130;
      (b) W. Liang, C. Yang, M. Nishijima, et al., Beilstein J. Org. Chem. 8 (2012) 1305;
      (c) C. Yang, Q. Wang, M. Yamauchi, et al., Photochem. Photobiol. Sci. 13 (2014) 190-198;
      (d) X. Wei, W. Liang, W. Wu, et al., Org. Biomol. Chem. 13 (2015) 2905-2912;
      (e) J. Yi, W. Liang, X. Wei, et al., Chin. Chem. Lett. 29 (2018) 87-90.

    5. [5]

      (a) Q. Wang, C. Yang, G. Fukuhara, et al., Beilstein J. Org. Chem. 7 (2011) 290;
      (b) C. Yang, C. Ke, F. Kahee, et al., Aust. J. Chem. 61 (2008) 565-568;
      (c) C. Yang, T. Mori, Y. Inoue, J. Org. Chem. 73 (2008) 5786-5794;
      (d) C. Yang, A. Nakamura, T. Wada, Y. Inoue, Org. Lett. 8 (2006) 3005-3008;
      (e) D.Q. Yuan, N. Kishikawa, C. Yang, et al., Chem. Commun. (2003) 416-417;
      (f) C. Yang, T. Mori, Y. Inoue, J. Org. Chem. 73 (2008) 5786-5794.

    6. [6]

      (a) C. Yang, Chin. Chem. Lett. 24 (2013) 437-441;
      (b) Q. Huang, L. Jiang, W. Liang, et al., J. Org. Chem. 81 (2016) 3430-3434;
      (c) Q. Wang, C. Yang, C. Ke, et al., Chem. Commun. 47 (2011) 6849-6851;
      (d) X. Wei, W. Wu, R. Matsushita, et al., J. Am. Chem. Soc. 140 (2018) 3959-3974;
      (e) C. Yang, Y. Inoue, Chem. Soc. Rev. 43 (2014) 4123-4143;
      (f) J. Yao, Z. Yan, J. Ji, et al., J. Am. Chem. Soc. 136 (2014) 6916-6919;
      (g) J.C. Gui, Z.Q. Yan, Y. Peng, et al., Chin. Chem. Lett. 27 (2016) 1017-1021;
      (h) C. Yang, T. Mori, T. Wada, Y. Inoue, New J. Chem. 31 (2007) 697-702;
      (i) R. Lu, C. Yang, Y. Cao, et al., Chem. Commun. (2008) 374-376;
      (j) C. Yang, M. Nishijima, A. Nakamura, et al., Tetrahedron Lett. 48 (2007) 4357-4360.

    7. [7]

      (a) C. Yang, H.K. Young, N. Selvapalam, et al., Org. Lett. 9 (2007) 4789-4792;
      (b) Z. Yan, Q. Huang, W. Liang, et al., Org. Lett. 19 (2017) 898-901;
      (c) L. Dai, W. Wu, W. Liang, et al., Chem. Commun. 54 (2018) 2643-2646.

    8. [8]

      (a) S.Y. Jon, N. Selvapalam, D.H. Oh, et al., J. Am. Chem. Soc. 125 (2003) 10186-10187;
      (b) C. Yang, G. Fukuhara, A. Nakamura, et al., J. Photochem. Photobio. A: Chem. 173 (2005) 375-383;
      (c) C. Yang, A. Nakamura, T. Wada, Y. Inoue, Org. Lett. 8 (2006) 3005-3008.

    9. [9]

      C. Ke, R.A. Smaldone, T. Kikuchi, H. Li, Angew. Chem. Int. Ed. 52(2013) 381-387.  doi: 10.1002/anie.201205087

    10. [10]

      M. Kajtár, C. Horváth-Toró, É. Kuthi, J. Szejtli, Proceedings of the First International Symposium on Cyclodextrins, Springer, 1982, pp. 181-193.

  • 加载中
    1. [1]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    2. [2]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    3. [3]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    4. [4]

      Yu XiaYangming JiangXin-Long NiQiaochun WangDaoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782

    5. [5]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    6. [6]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    7. [7]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    8. [8]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    9. [9]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    10. [10]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    11. [11]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    12. [12]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    13. [13]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    14. [14]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    15. [15]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    16. [16]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    17. [17]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

    18. [18]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    19. [19]

      Chunru ZhaoYi LiuShilong LiXiang WuJinghai Liu . PVP decorated H3.78V6O13 microspheres assembled by nanosheets for aqueous zinc ion batteries at variable work temperature. Chinese Chemical Letters, 2025, 36(6): 110185-. doi: 10.1016/j.cclet.2024.110185

    20. [20]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

Metrics
  • PDF Downloads(2)
  • Abstract views(931)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return