Citation: Zhao Ya-Kun, Gao Zhong-Zheng, Wang Hui, Zhang Dan-Wei, Li Zhan-Ting. Self-assembly of supramolecular polymers in water from tetracationic and tetraanionic monomers in water through cooperative electrostatic attraction and aromatic stacking[J]. Chinese Chemical Letters, ;2019, 30(1): 127-130. doi: 10.1016/j.cclet.2018.10.016 shu

Self-assembly of supramolecular polymers in water from tetracationic and tetraanionic monomers in water through cooperative electrostatic attraction and aromatic stacking

  • Corresponding author: Zhang Dan-Wei, zhangdw@fudan.edu.cn Li Zhan-Ting, ztli@fudan.edu.cn
  • Received Date: 15 September 2018
    Revised Date: 11 October 2018
    Accepted Date: 16 October 2018
    Available Online: 18 January 2018

Figures(3)

  • The cooperative electrostatic attraction and π-π aromatic stacking interactions between tetrahedral tetrapyridinium TP and three tetraanionic tetraphenylethylene derivatives TPE-1~3 led to the formation of a new kind of supramolecular polymer networks in water, which have been confirmed by 1H NMR, fluorescence, isothermal titration calorimetric (ITC) and dynamic light scattering (DLS) experiments. ITC studies show that the contributions of enthalpy and entropy were comparable, reflecting the importance of hydrophobicity in driving the intermolecular aromatic stacking. DLS experiments indicate that the linear supramolecular polymers formed by these tetratopic monomers further aggregated into networks of 102-nm size.
  • 加载中
    1. [1]

      (a) J.M.Lehn, Polym.Int.51 (2002)825-839
      (b) L.Brunsveld, B.J.B.Folmer, E.W.Meijer, R.P.Sijbesma, Chem.Rev.101 (2001)4071-4097
      (c) X.Zheng, Q.Miao, W.Wang, D.H.Qu, Chin.Chem.Lett.29 (2018)1621-1624
      (d) X.Wang, Y.Yang, L.Fan, F.Yang, D.Wu, Sci.China Chem.61 (2018)311-318
      (e) G.Yin, L.Chen, C.Wang, H.Yang, Chin.J.Chem.36 (2018)134-138
      (f) C.Xu, L.Xu, X.Ma, Chin.Chem.Lett.29 (2018)970-972
      (g) Q.Zhao, Y.Chen, Y.Liu, Chin.Chem.Lett.29 (2018)84-86
      (h) C.Xiong, R.Sun, Chin.J.Chem.35 (2017)1669-1672
      (i) Z.J.Yin, Z.Q.Wu, F.Lin, et al., Chin.Chem.Lett.28 (2017)1167-1171
      (j) Q.Wang, M.Cheng, J.L.Jiang, L.Y.Wang, Chin.Chem.Lett.28 (2017)793-797
      (k) P.Wang, J.Ma, D.Xia, Org.Chem.Front.5 (2018)1297-1302
      (l) M.Y.Li, K.Han, J.Li, X.S.Jia, C.J.Li, Acta Polym.Sin. (2017)129-134
      (m) C.W.Zhang, B.Ou, G.Q.Yin, L.J.Chen, H.B.Yang, Acta Polym.Sin. (2017)71-79
      (n) Z.S.Yang, Y.K.Tian, Z.J.Li, et al., Acta Polym.Sin. (2017)121-128
      (o) Y.Fan, F.Lin, X.N.Xu, J.Q.Xu, X.Zhao, Acta Polym.Sin. (2017)80-85
      (p) M.Liu, G.Ouyang, D.Niu, Y.Sang, Org.Chem.Front.5 (2018)2885-2900
      (q) X.F.Ji, D.Y.Xia, X.Z.Yan, H.Wang, F.H.Huang, Acta Polym.Sin. (2017)9-18
      (r) L.Yang, X.Tan, Z.Wang, X.Zhang, Chem.Rev.115 (2015)7196-7239.

    2. [2]

      (a) S.Chen, W.H.Binder, Acc.Chem.Res.49 (2016)1409-1420
      (b) B.Isare, S.Pensec, M.Raynal, L.Bouteiller, Compt.Rendus Chim.19 (2016)148-156
      (c) M.Anthamatten, Adv.Polym.Sci.268 (2015)47-99.

    3. [3]

      (a) A.Winter, U.S.Schubert, Chem.Soc.Rev.45 (2016)5311-5357
      (b) H.Li, L.Wu, Soft Matter 10 (2014)9038-9053.

    4. [4]

      (a) W.Hayes, B.W.Greenland, Adv.Polym.Sci.268 (2015)143-166
      (b) Y.K.Tian, Y.F.Han, Z.S.Yang, F.Wang, Macromolecules 49 (2016)6455-6461
      (c) B.Zheng, F.Wang, S.Dong, F.Huang, Chem.Soc.Rev.41 (2012)1621-1636.

    5. [5]

      (a) A.Harada, Y.Takashima, M.Nakahata, Acc.Chem.Res.47 (2014)2128-2140
      (b) J.Tian, L.Zhang, H.Wang, D.W.Zhang, Z.T.Li, Supramol.Chem.28 (2016)769-783
      (c) Y.Liu, H.Yang, Z.Wang, X.Zhang, Chem.Asian J.8 (2013)1626-1632.

    6. [6]

      (a) X.Ma, H.Tian, Acc.Chem.Res.47 (2014)1971-1981
      (b) Z.Ding, H.Li, W.Gao, et al., Chin.J.Chem.35 (2017)447-456
      (c) E.Krieg, M.M.C.Bastings, P.Besenius, B.Rybtchinski, Chem.Rev.116 (2016)2414-2477
      (d) Q.Zhao, Y.Chen, Y.Liu, Chin.Chem.Lett.29 (2018)84-86.

    7. [7]

      (a) C.Schmuck, W.Wienand, J.Am.Chem.Soc.125 (2003)452-459
      (b) C.Schmuck, K.Samanta, M.Ehlers, Chem.Eur.J.22 (2016)15242-15247.

    8. [8]

      (a) Y.C.Zhang, Y.Qin, H.Wang, et al., Chem.Asian J.11 (2016)1065-1070
      (b) Y.Zhang, S.B.Yu, B.Yang, et al., Org.Chem.Front.5 (2018)1039-1044.

    9. [9]

      Q.Qi, B.Yang, H.Wang, D.W.Zhang, Z.T.Li, Tetrahedron 74 (2018)2792-2796.  doi: 10.1016/j.tet.2018.04.047

    10. [10]

      (a) A.Mulder, J.Huskens, D.N.Reinhoudt, Org.Biomol.Chem.2 (2004)3409-3424
      (b) C.Fasting, C.A.Schalley, M.Weber, et al., Angew.Chem.Int.Ed.51 (2012)10472-10498
      (c) C.Yao, J.Tian, H.Wang, et al., Chin.Chem.Lett.28 (2017)893-899
      (d) H.Wang, D.W.Zhang, Z.T.Li, Acta Polym.Sin. (2017)19-26
      (e) J.Tian, C.Yao, W.L.Yang, et al., Chin.Chem.Lett.28 (2017)798-806
      (f) X.F.Li, S.B.Yu, B.Yang, et al., Sci.China Chem.61 (2018)830-835
      (g) Y.Chen, F.Huang, Z.T.Li, Y.Liu, Sci.China Chem.61 (2018)979-992
      (h) T.K.Dam, M.L.Talaga, N.Fan, C.F.Brewer, Methods Enzym.567 (2016)71-95
      (i) J.Yan, W.Li, A.Zhang, Chem.Commun.50 (2014)12221-12233;
      (j) E.Lopez-Fontal, L.Milanesi, S.Tomas, Chem.Sci.7 (2016)4468-4475.

    11. [11]

      J.M.Campos, M.C.Nunez, R.M.Sanchez, et al., Bioorg.Med.Chem.10 (2002)2215-2231.

    12. [12]

      (a) Y.Hong, J.W.Y.Lam, B.Z.Tang, Chem.Soc.Rev.40 (2011)5361-5388
      (b) Y.Shi, Y.Cai, Y.J.Wang, et al., Sci.China Chem.60 (2017)635-641
      (c) S.Liu, J.Cheng, J.Xu, Chin.J.Chem.35 (2017)335-340
      (d) X.Y.Teng, X.C.Wu, Y.Q.Cao, et al., Chin.Chem.Lett.28 (2017)1485-1491
      (e) Y.Song, L.Zong, L.Zhang, Z.Li, Sci.China Chem.60 (2017)1596-1601.

    13. [13]

      T.P.Silverstein, J.Chem.Educ.75 (1998)116-118.

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    4. [4]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    5. [5]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    6. [6]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    9. [9]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    10. [10]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    11. [11]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    12. [12]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    13. [13]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    14. [14]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    15. [15]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    16. [16]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    17. [17]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    18. [18]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    19. [19]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(4)
  • Abstract views(864)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return