Citation: Jiang Chun, Yu Piao-Piao, Zhang Qing, Xu Hua-Dong, Shen Mei-Hua. One-pot synthesis of tetrahydroindoles via a copper catalyzed N-alkynation/[4+2] cycloaddition cascade[J]. Chinese Chemical Letters, ;2019, 30(1): 266-268. doi: 10.1016/j.cclet.2018.05.040 shu

One-pot synthesis of tetrahydroindoles via a copper catalyzed N-alkynation/[4+2] cycloaddition cascade

  • Corresponding author: Xu Hua-Dong, hdxu@cczu.edu.cn Shen Mei-Hua, shenmh@cczu.edu.cn
  • Received Date: 15 March 2018
    Revised Date: 14 May 2018
    Accepted Date: 25 May 2018
    Available Online: 26 January 2018

Figures(3)

  • A CuSO4 catalyzed ynamide formation/[4+2] cycloaddition relay reaction was achieved in one-pot. Various 4, 7-cis-dihydroindolines were produced in good to high yields. The one-pot operation in conjunction with the cheap and benign copper catalysis renders this reaction highly sustainable.
  • 加载中
    1. [1]

      K. Dinesh, J. Subheet Kumar, Curr. Med. Chem. 23(2016) 4338-4394.  doi: 10.2174/0929867323666160809093930

    2. [2]

      (a) K.E. Gettys, Z. Ye, M. Dai, Synthesis 49 (2017) 2589-2604;
      (b) Y.Y. Huang, C. Cai, X. Yang, et al., ACS Catal. 6 (2016) 5747-5763;
      (c) M.U. Luescher, K. Geoghegan, P.L. Nichols, et al., Aldrichim. Acta 48 (2015) 43-48;
      (d) S.A. Bonderoff, A. Padwa, J. Org. Chem. 82 (2017) 642-651;
      (e) D. Zheng, T. Liu, X. Liu, et al., J. Org. Chem. 81 (2016) 9428-9432;
      (f) S. Kotha, R. Gunta, J. Org. Chem. 82 (2017) 8527-8535;
      (g) C.V.T. Vo, G. Mikutis, J.W. Bode, Angew. Chem. Int. Ed. 52 (2013) 1705-1708;
      (h) C.V.T. Vo, M.U. Luescher, J.W. Bode, Nat. Chem. 6 (2014) 310-314;
      (i) X. Bantreil, G. Prestat, A. Moreno, et al., Chem. Eur. J. 17 (2011) 2885-2896.

    3. [3]

      (a) Y. Li, Q. Zhang, Q. Du, et al., Org. Lett. 18 (2016) 4076-4079;
      (b) D.H. Zhang, M. Shi, Tetrahedron Lett. 53 (2012) 487-490;
      (c) M. Gulias, A. Collado, B. Trillo, et al., J. Am. Chem. Soc. 133 (2011) 7660-7663;
      (d) T. Shibata, Y.K. Tahara, K. Tamura, et al., J. Am. Chem. Soc. 130 (2008) 3451-3457.

    4. [4]

      (a) X.H. Pan, P. Jiang, Z.H. Jia, et al., Tetrahedron 71 (2015) 5124-5129;
      (b) H.D. Xu, K. Xu, H. Zhou, et al., Synthesis 47 (2015) 641-646;
      (c) H.D. Xu, K. Xu, Z.H. Jia, et al., Asian J. Org. Chem. 3 (2014) 1154-1158.

    5. [5]

      (a) H.D. Xu, H. Zhou, Y.P. Pan, et al., Angew. Chem. Int. Ed. 55 (2016) 2540-2544;
      (b) B. Biletskyi, A. Tenaglia, H. Clavier, et al., Tetrahedron Lett. 59 (2018) 103-107;
      (c) Y.I. Horak, R.Z. Lytvyn, Y.O.V. Laba, et al., Tetrahedron Lett. 58 (2017) 4103-4106;
      (d) D. Niu, T.R. Hoye, Nat. Chem. 6 (2013) 34-35.

    6. [6]

      (a) G. Duret, V. Le Fouler, P. Bisseret, et al., Eur. J. Org. Chem. 2017 (2017) 6816-6830;
      (b) F. Pan, C. Shu, L.W. Ye, Org. Biomol. Chem. 14 (2016) 9456-9465;
      (c) G. Evano, N. Blanchard, G. Compain, A. Coste, et al., Chem. Lett. 45 (2016) 574-585;
      (d) X.N. Wang, H.S. Yeom, L.C. Fang, et al., Acc. Chem. Res. 47 (2014) 560-578;
      (e) G. Evano, A. Coste, K. Jouvin, Angew. Chem. Int. Ed. 49 (2010) 2840-2859;
      (f) J.R. Alexander, M.J. Cook, Org. Lett. 19 (2017) 5822-5825;
      (g) B. Huang, L. Zeng, Y. Shen, et al., Chem. Commun. 53 (2017) 11996-11999;
      (h) B. Huang, L. Zeng, Y. Shen, et al., Angew. Chem. Int. Ed. 56 (2017) 4565-4568;
      (i) L. Li, X.M. Chen, Z.S. Wang, et al., ACS Catal. 7 (2017) 4004-4010;
      (j) X. Li, Z. Wang, X. Ma, et al., Org. Lett. 19 (2017) 5744-5747;
      (k) V.R. Sabbasani, H. Lee, P. Xie, et al., Chem.-Eur. J. 23 (2017) 8161-8165;
      (l) B. Zhou, L. Li, X.Q. Zhu, et al., Angew. Chem. Int. Ed. 56 (2017) 4015-4019;
      (m) F. Pan, X.L. Li, X.M. Chen, et al., ACS Catal. 6 (2016) 6055-6062;
      (n) L. Hu, S. Xu, Z. Zhao, et al., J. Am. Chem. Soc. 138 (2016) 13135-13138.

    7. [7]

      W.J. Yoo, A. Allen, K. Villeneuve, et al., Org. Lett. 7(2005) 5853-5856.  doi: 10.1021/ol052412o

    8. [8]

      (a) G. Duret, R. Quinlan, R.E. Martin, et al., Org. Lett. 18 (2016) 1610-1613;
      (b) T. Wang, T.R. Hoye, J. Am. Chem. Soc. 138 (2016) 13870-13873;
      (c) T. Wang, D. Niu, T.R. Hoye, J. Am. Chem. Soc. 138 (2016) 7832-7835;
      (d) J.R. Dunetz, R.L. Danheiser, J. Am. Chem. Soc. 127 (2005) 5776-5777.

    9. [9]

      B. Witulski, J. Lumtscher, U. Bergstrasser, Synlett 5(2003) 708-710.

    10. [10]

      Y. Zhang, R.P. Hsung, M.R. Tracey, et al., Org. Lett. 6(2004) 1151-1154.  doi: 10.1021/ol049827e

  • 加载中
    1. [1]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    2. [2]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    3. [3]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    4. [4]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    5. [5]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    6. [6]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    7. [7]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    8. [8]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    9. [9]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    10. [10]

      Jieshuai XiaoYuan ZhengYue ZhaoZhuangzhi ShiMinyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243

    11. [11]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    12. [12]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    13. [13]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    14. [14]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    15. [15]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    16. [16]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    17. [17]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    18. [18]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    19. [19]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    20. [20]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

Metrics
  • PDF Downloads(5)
  • Abstract views(818)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return