Citation: Sun Wei, Jiang Feng, Liu Honglei, Gao Xing, Jia Hao, Zhang Cheng, Guo Hongchao. Double [3+2] cycloaddition of nitrile oxides with allenoates: Synthesis of spirobidihydroisoxazoles[J]. Chinese Chemical Letters, ;2019, 30(2): 363-366. doi: 10.1016/j.cclet.2018.04.024 shu

Double [3+2] cycloaddition of nitrile oxides with allenoates: Synthesis of spirobidihydroisoxazoles

    * Corresponding authors.
    E-mail addresses: gilbertcheung@qq.com (C. Zhang), hchguo@cau.edu.cn (H. Guo)
  • Received Date: 9 February 2018
    Revised Date: 5 April 2018
    Accepted Date: 18 April 2018
    Available Online: 24 February 2018

Figures(3)

  • The double [3+2] cycloaddition of allenoates with nitrile oxides is presented. The reaction worked well under mild reaction conditions to give the spirobidihydroisoxazole in moderate to excellent yields with excellent diastereoselectivities. The two dihydroisoxazole rings have been formed via a sequential double [3+2] cycloaddition.
  • 加载中
    1. [1]

      (a) M. Sannigrahi, Tetrahedron 55 (1999) 9007-9071;
      (b) S. Kotha, A.C. Deb, K. Lahiri, E. Manivannan, Synthesis 2 (2009) 165-193;
      (c) O.O. Grygorenko, D.S. Radchenko, D.M. Volochnyuk, A.A. Tolmachev, I.V. Komarov, Chem. Rev. 111 (2011) 5506-5568.

    2. [2]

      (a) P.R. Berquist, R.J. Wells, Bioactive marine biopolymers, in: P.J. Scheuer (Ed.), Marine Natural Products, Elsevier Inc., New York, 1983, pp. 391-427;
      (b) F. Perron, K.F. Albizati, Chem. Rev. 89 (1989) 1617-1661;
      (c) P.R. Berquist, R.J. Wells, Chemotaxonomy of the porifera: the development and current status of the field, in: P.J. Scheuer (Ed.), Marine Natural Products, Elsevier Inc., New York, 1983, pp. 1-50;
      (d) G.M. Konig, A.D. Wright, Heterocycles 36 (1993) 1351-1358;
      (e) A.A. Alahmadi, M.F. El-zohryt, J. Chem. Technol. Biotechnol. 62 (1995) 366-372;
      (f) G.L. Arutyunyan, A.A. Chachoyan, T.E. Agadzhanyan, B.T. Garibdzhanyan, Pharm. Chem. J. 30 (1996) 739-741;
      (g) M.H. Chen, P.P. Pollard, A.A. Patchett, et al., Bioorg. Med. Chem. Lett. 9 (1999) 1261-1266;
      (h) R.D. Encarnación, E. Sandoval, J. Malmstrøm, C. Christophersen, J. Nat. Prod. 63 (2000) 874-875;
      (i) V.M. Kisel, E.O. Kostyrko, V.A. Kovtunenko, Chem. Heterocycl. Comp. 38 (2004) 1295-1318;
      (j) B.S. Lukyanov, M.B. Lukyanov, Chem. Heterocycl. Comp. 41 (2006) 281-311;
      (k) Ö. Güzel, E. Ilhan, A. Salman, Monatsh. Chem. 137 (2006) 795_-801;
      (l) N.S. Joshi, B.K. Karale, C.H. Gill, Chem. Heterocycl. Compd. 42 (2006) 681-685;
      (m) H. Habib-Zahmani, J. Viala, S. Hacini, J. Rodriguez, Synlett 7 (2007) 1037-1042.

    3. [3]

      (a) S. Kotha, A.C. Deb, K. Lahiri, E. Manivannan, Synthesis 2 (2009) 165-194;
      (b) R. Rios, Chem. Soc. Rev. 41 (2012) 1060-1074;
      (c) Z.Y. Cao, X. Wang, C. Tan, et al., J. Am. Chem. Soc. 135 (2013) 8197-8200;
      (d) Y.L. Liu, X. Wang, Y.L. Zhao, et al., Angew. Chem. Int. Ed. 52 (2013) 13735-13739;
      (e) X.P. Yin, X.P. Zeng, Y.L. Liu, et al., Angew. Chem. Int. Ed. 53 (2014) 13740-13745;
      (f) J.S. Yu, F.M. Liao, W.M. Gao, et al., Angew. Chem. Int. Ed. 54 (2015) 7381-7385.

    4. [4]

      A.P. Krapcho, Synthesis 6(1974) 383-419.

    5. [5]

      (a) J.A. Palmes, A. Aponick, Synthesis 44 (2012) 3699-3721;
      (b) V.A. D'Yakonov, O.A. Trapeznikova, A. de Meijere, U.M. Dzhemilev, Chem. Rev. 114 (2014) 5775-5814;
      (c) Z.Y. Cao, J. Zhou, Org. Chem. Front. 2 (2015) 849-858;
      (d) T. Nemoto, Y. Hamada, Synlett 27 (2016) 2301-2313.

    6. [6]

      J. Sperry, Y.C. Liu, M.A. Brimble, Org. Biomol. Chem. 8(2010) 29-38.  doi: 10.1039/B916041H

    7. [7]

      L.K. Smith, I.R. Baxendale, Org. Biomol. Chem. 13(2015) 9907-9933.  doi: 10.1039/C5OB01524C

    8. [8]

      (a) K. Undheim, J. Efskind, Tetrahedron 56 (2000) 4847-4857;
      (b) N.Y. Kuznetsov, Y.N. Bubnov, Russ. Chem. Rev. 84 (2015) 758-785.

    9. [9]

      M.A. Rizzacasa, A. Pollex, Org. Biomol. Chem. 7(2009) 1053-1059.  doi: 10.1039/b819966n

    10. [10]

      (a) G.P. Savage, Curr. Org. Chem. 14 (2010) 1478-1499;
      (b) N. Arumugam, R.S. Kumar, A.I. Almansour, S. Perumal, Curr. Org. Chem. 17 (2013) 1929-1956;
      (c) E.M. Hussein, 1, 3-Dipolar cycloadditions approach to bioactive spiroheterocycles, in: K.L. Ameta, R.P. Pawar, A.J. Domb (Eds.), Bioactive Heterocycles: Synthesis and Biological evaluation, Nova Science Publishers Inc., New York, 2013, pp. 157-186;
      (d) P.W. Xu, J.K. Liu, L. Shen, et al., Nat. Commun. 8 (2017) 1619-1626;
      (e) Y.N. Gao, M. Shi, Chin. Chem. Lett. 28 (2017) 493-502.

    11. [11]

      (a) A.P. Krapcho, Synthesis 7 (1976) 425-444;
      (b) A. Nakazaki, S. Kobayashi, Synlett 23 (2012) 1427-1445.

    12. [12]

      (a) M.A. Arai, T. Arai, H. Sasai, Org. Lett. 1 (1999) 1795-1797;
      (b) M.A. Arai, M. Kuraishi, T. Arai, H. Sasai, J. Am. Chem. Soc. 123 (2001) 2907-2908.

    13. [13]

      G. Broggini, G. Molteni, G. Zecchi, J. Org. Chem. 59(1994) 8271-8274.  doi: 10.1021/jo00105a055

    14. [14]

      (a) H.L. Liu, H. Jia, B. Wang, Y.M. Xiao, H.C. Guo, Org. Lett. 19 (2017) 4714-4717;
      (b) R.S. Na, C.F. Jing, Q.H. Xu, et al., J. Am. Chem. Soc. 133 (2011) 13337-13348;
      (c) R.S. Na, H.L. Liu, Z. Li, et al., Tetrahedron 68 (2012) 2349-2356;
      (d) J. Liu, H.L. Liu, R.S. Na, et al., Chem. Lett. 41 (2012) 218-220;
      (e) C.F. Jing, R.S. Na, B. Wang, et al., Adv. Synth. Catal. 354 (2012) 1023-1034;
      (f) X. Wu, R.S. Na, H.L. Liu, et al., Tetrahedron. Lett. 53 (2012) 342-344;
      (g) L. Zhang, C.F. Jing, H.L. Liu, et al., Synthesis 45 (2013) 53-64;
      (h) Z. Li, H. Yu, L. Zhang, et al., Lett. Org. Chem. 11 (2014) 220-224;
      (i) L. Zhang, H.L. Liu, G.Y. Qiao, et al., J. Am. Chem. Soc. 137 (2015) 4316-4319;
      (j) Z. Li, H. Yu, Y.L. Feng, et al., RSC Adv. 5 (2015) 34481-34485;
      (k) F.L. Li, J.F. Chen, Y.D. Hou, et al., Org. Lett. 17 (2015) 5376-5379;
      (l) H.L. Liu, Y. Liu, C.F. Yuan, et al., Org. Lett. 18 (2016) 1302-1305;
      (m) C.H. Yuan, L.J. Zhou, M.R. Xia, et al., Org. Lett. 18 (2016) 5644-5647;
      (n) Z. Li, H. Yu, Y. Liu, et al., Adv. Synth. Catal. 358 (2016) 1880-1885;
      (o) X. Zhang, C.H. Yuan, C. Zhang, et al., Tetrahedron 72 (2016) 8274-8281;
      (p) L.J. Zhou, C.H. Yuan, C. Zhang, et al., Adv. Synth. Catal. 359 (2017) 2316-2321;
      (q) C. Wang, H. Jia, C. Zhang, et al., J. Org. Chem. 82 (2017) 633-641;
      (r) B. Mao, W. Shi, J. Liao, et al., Org. Lett. 19 (2017) 6340-6343;
      (s) B. Wang, H. Liu, Q. Wang, et al., Tetrahedron 73 (2017) 5926-5931;
      (t) W. Yang, W. Sun, C. Zhang, et al., ACS Catal. 7 (2017) 3142-3146;
      (u) L. Zhou, C. Yuan, Y. Zeng, et al., Chem. Sci. 9 (2018) 1831-1835.

    15. [15]

      (a) A. Sysak, B. Obminska-Mrukowicz, Eur. J. Med. Chem. 137 (2017) 292-309;
      (b) K. Kaur, V. Kumar, A.K. Sharma, G.K. Gupta, Eur. J. Med. Chem. 77 (2014) 121-133;
      (c) G.N. Pairas, F. Perperopoulou, P.G. Tsoungas, G. Varvounis, ChemMedChem 12 (2017) 408-419;
      (d) A. Pinto, L. Tamborini, G. Cullia, P. Conti, C. De Micheli, ChemMedChem 11 (2016) 10-14;
      (e) S. Muthusamy, S.M. Lee, M. Huang, et al., Bull. Korean Chem. Soc. 37 (2016) 1020-1028;
      (f) J.E. Casida, Chem. Res. Toxicol. 28 (2015) 560-566;
      (g) F. Beugnet, J. Liebenberg, L. Halos, Vet. Parasitol. 209 (2015) 142-145;
      (h) C. Zhao, J.E. Casida, J. Agric. Food. Chem. 62 (2014) 1019-1024;
      (i) A. Pinto, P. Conti, M. De Amici, et al., J. Med. Chem. 51 (2008) 2311-2315.

    16. [16]

      (a) H. Suga, Y. Hashimoto, Y. Toda, et al., Angew. Chem. Int. Ed. 56 (2017) 11936-11939;
      (b) V.A. Lofstrand, F.G. West, Chem. Eur. J. 22 (2016) 10763-10767;
      (c) K.S. Vinay Kumar, G.S. Lingaraju, Y.K. Bommegowda, et al., RSC Adv. 5 (2015) 90408-90421;
      (d) T. Ikawa, H. Kaneko, S. Masuda, et al., Org. Biomol. Chem. 13 (2015) 520-526;
      (e) Y. Yamashita, Y. Hirano, A. Takada, H. Takikawa, K. Suzuki, Angew. Chem. Int. Ed. 52 (2013) 6658-6661;
      (f) E.M. Beccalli, G. Broggini, M. Martinelli, N. Masciocchi, S. Sottocornola, Org. Lett. 8 (2006) 4521-4524;
      (g) O. Altintas, M. Glassner, C. Rodriguez-Emmenegger, et al., Angew. Chem. Int. Ed. 54 (2015) 5777-5783;
      (h) F. Friscourt, C.J. Fahrni, G.J. Boons, Chem. Eur. J. 21 (2015) 13996-14001;
      (i) B.K. Kuruba, S. Vasanthkumar, Tetrahedron 73 (2017) 3860-3865;
      (j) J.A. Crossley, D.L. Browne, J. Org. Chem. 75 (2010) 5414-5416;
      (k) H. Zheng, R. McDonald, D.G. Hall, Chem. Eur. J. 16 (2010) 5454-5460;
      (l) O. Jackowski, T. Lecourt, L. Micouin, Org. Lett. 13 (2011) 5664-5667;
      (m) X. Xu, D. Shabashov, P.Y. Zavalij, M.P. Doyle, Org. Lett. 14 (2012) 800-803;
      (n) G. Molteni, P. Del Buttero, Tetrahedron 67 (2011) 7343-7347;
      (o) M.A. Hofmann, U. Bergsträßer, G.J. Reiß, L. Nyulászi, M. Regitz, Angew. Chem. Int. Ed. 39 (2000) 1261-1263;
      (p) H. Suga, Y. Adachi, K. Fujimoto, et al., J. Org. Chem. 74 (2009) 1099-1113;
      (q) P. Quadrelli, M. Mella, S. Carosso, B. Bovio, P. Caramella, Eur. J. Org. Chem. 2007 (2007) 6003-6015;
      (r) C.K. Lee, A.B. Holmes, B. Al-Duri, et al., Chem. Commun. 2004 (2004) 2622-2623;
      (s) T. Rispens, J.B.F.N. Engberts, J. Org. Chem. 68 (2003) 8520-8528;
      (t) P. Quadrelli, V. Fassardi, A. Cardarelli, P. Caramella, Eur. J. Org. Chem. 2002 (2002) 2058-2065;
      (u) C. Zorn, B. Anichini, A. Goti, et al., J. Org. Chem. 64 (1999) 7846-7855;
      (v) A. Mack, B. Breit, T. Wettling, et al., Angew. Chem. Int. Ed. 36 (1997) 1337-1340;
      (w) R. Huisgen, R. Temme, Eur. J. Org. Chem. 1998 (1998) 387-401;
      (x) W.S. Chung, T.L. Tsai, C.C. Ho, M.Y.N. Chiang, W.J. le Noble, J. Org. Chem. 62 (1997) 4672-4676;
      (y) L. Bruche, M.L. Gelmi, G. Zecchi, J. Org. Chem. 50 (1985) 3206-3208.

  • 加载中
    1. [1]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    2. [2]

      Ze-Hong ZhengMu-Qiu ChenJin ZhouJie WangYan-Rong WeiCheng PengGu ZhanQian-Qian YangBo Han . Diverse synthesis of bridged bicyclo[3.2.1]octa-2,6-diene and tricyclo[3.2.1.02,7]oct-3-ene frameworks via stepwise cascade reactions. Chinese Chemical Letters, 2025, 36(12): 111202-. doi: 10.1016/j.cclet.2025.111202

    3. [3]

      Jun LiuZhaoyu FengRenming PanXiaolong YuMeijuan ZhouGang ZhaoHongyu Wang . Enantioselective regulation to coronal polyheterocyclic compounds via phosphonium salt-catalyzed cycloadditions of azomethine imines with γ-butenolides. Chinese Chemical Letters, 2025, 36(8): 110647-. doi: 10.1016/j.cclet.2024.110647

    4. [4]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

    5. [5]

      Meixin WangYizhi ZhangShanshan LiuXiao Shen . Synthesis of rigidified cyclohexanes enabled by visible-light-induced trifluoroacetylsilane-mediated [2 + 2] cycloaddition of cyclopropenes. Chinese Chemical Letters, 2025, 36(8): 110758-. doi: 10.1016/j.cclet.2024.110758

    6. [6]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    7. [7]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    8. [8]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    9. [9]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    10. [10]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    11. [11]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    12. [12]

      Chen-Xin WangGuang-Lei LiYu HangDan-Feng LuJian-Qi YeHao SuBing HouTao SuoDan Wen . Shock-resistant wearable pH sensor based on tungsten oxide aerogel. Chinese Chemical Letters, 2025, 36(7): 110502-. doi: 10.1016/j.cclet.2024.110502

    13. [13]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    14. [14]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    15. [15]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    16. [16]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    17. [17]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    18. [18]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    19. [19]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    20. [20]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

Metrics
  • PDF Downloads(8)
  • Abstract views(1321)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return