Citation: Wang Zhenrong, Xie Peipei, Xia Yuanzhi. Recent progress in Ru(Ⅱ)-catalyzed C-H activations with oxidizing directing groups[J]. Chinese Chemical Letters, ;2018, 29(1): 47-53. doi: 10.1016/j.cclet.2017.06.018 shu

Recent progress in Ru(Ⅱ)-catalyzed C-H activations with oxidizing directing groups


  • Author Bio:

    Yuanzhi Xia  completed his bachelor degree at Hubei University in 2004 and obtained his Ph.D. degree from the Graduate University of Chinese Academy of Sciences in 2009, working with Profs. Zhi-Xiang Yu and Yahong Li. After that, he was appointed to a lectureship at Wenzhou University, and was promoted to full Professor in 2016 and director of the chemistry department in 2017. He was a visiting scientist in the research group of Prof. Bernhard Breit at the University of Freiburg, Germany, from 2013 to 2015. His research focuses on mechanistic investigation of organic and organometallic transformations by DFT calculations and development of new synthetic methodology.
  • Corresponding author: Xia Yuanzhi, xyz@wzu.edu.cn
  • Received Date: 10 May 2017
    Revised Date: 27 May 2017
    Accepted Date: 14 June 2017
    Available Online: 15 January 2017

Figures(24)

  • In this review, we highlight the recent development in Ru(Ⅱ)-catalyzed C-H activations under redox neutral conditions. After a brief introduction of the C-H activations with oxidizing direct group by different transition metal catalysts, the examples with Ru(Ⅱ) catalyst were classified and introduced according to different internal oxidants used in the system. The features of each methodology will be highlighted and the plausible reaction mechanism will be presented if available.
  • 加载中
    1. [1]

      (a) B. Song, B. Xu, Chem. Soc. Rev. 46(2017) 1103-1123;
      (b) G. Qiu, J. Wu, Org. Chem. Front. 2(2015) 169-178;
      (c) W. Liu, L. Ackermann, ACS Catal. 6(2016) 3743-3752;
      (d) Z. Chen, B. Wang, J. Zhang, et al., Org. Chem. Front. 2(2015) 1107-1295;
      (e) P. L. Arnold, M. W. McMullon, J. Rieb, F. E. Kühn, M. Angew, Chem. Int. Ed. 54(2015) 82-100;
      (f) Zhang, Y. Zhang, X. Jie, et al., Org. Chem. Front. 1(2014) 843-895.

    2. [2]

      (a) H. Huang, X. Ji, W. Wu, H. Jiang, Chem. Soc. Rev. 44(2015) 1155-1171;
      (b) J. Mo, L. Wang, Y. Liu, X. Cui, Synthesis 47(2015) 439-459;
      (c) T. Gensch, M. N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 45(2016) 2900-2936.

    3. [3]

      T. Gerfaud, L. Neuville, J. Zhu, J. Angew, Chem. Int. Ed. 48(2009) 572-577.  doi: 10.1002/anie.v48:3

    4. [4]

      (a) J. Wu, X. Cui, L. Chen, G. Jiang, Y. Wu, J. Am. Chem. Soc. 131(2009) 13888-13889;
      (b) Y. Tan, J. F. Hartwig, J. Am. Chem. Soc. 132(2010) 3676-3677.

    5. [5]

      (a) S. Rakshit, C. Grohmann, T. Besset, F. Glorius, J. Am. Chem. Soc. 133(2011) 2350-2353;
      (b) N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 133(2011) 6449-6457;
      (c) N. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 132(2010) 6908-6909.

    6. [6]

      (a) S. Yu, S. Liu, Y. Lan, B. Wan, X. Li, J. Am. Chem. Soc. 137(2015) 1623-1631;
      (b) S. Wu, R. Zeng, C. Fu, et al., Chem. Sci. 6(2015) 2275-2285;
      (c) T. Piou, T. Rovis, J. Am. Chem. Soc. 136(2014) 11292-11295;
      (d) T. K. Hyster, D. M. Dalton, T. Rovis, Chem. Sci. 6(2015) 254-258;
      (e) S. Cui, Y. Zhang, D. Wang, Q. Wu, Chem. Sci. 4(2013) 3912-3916;
      (f) H. Zhang, K. Wang, B. Wang, et al., Angew. Chem. Int. Ed. 53(2014) 13234-13238.

    7. [7]

      (a) J. Chen, W. Guo, Y. Xia, J. Org. Chem. 81(2016) 2635-2638;
      (b) W. Guo, Y. Xia, J. Org. Chem. 80(2015) 8113-8121;
      (c) W. Guo, T. Zhou, Y. Xia, Organometallics 34(2015) 3012-3020;
      (d) T. Zhou, W. Guo, Y. Xia, Chem. Eur. J. 21(2015) 9209-9218;
      (e) L. Xu, Q. Zhu, G. Huang, B. Cheng, Y. Xia, J. Org. Chem. 77(2012) 3017-3024.

    8. [8]

      (a) Y. Yang, K. N. Houk, Y. Wu, J. Am. Chem. Soc. 138(2016) 6861-6868;
      (b) S. R. Neufeldt, G. Jimene'z-Ose's, J. R. Huckins, O. R. Thiel, K. N. Houk, J. Am. Chem. Soc. 137(2015) 9843-9854;
      (c) M. Zhang, G. Huang, Chem. Eur. J. 22(2016) 9356-9365;
      (d) W. Chen, Z. Lin, Organometallics 34(2015) 309-318.

    9. [9]

      (a) A. A. Kulkarni, O. Daugulis, Synthesis 24(2009) 4087-4109;
      (b) K. Gao, N. Yoshikai, Acc. Chem. Res. 47(2014) 1208-1219;
      (c) R. Hess, J. Treutwein, G. Hilt, Synthesis 22(2008) 3537-3562;
      (d) M. Moselage, J. Li, L. Ackermann, ACS Catal. 6(2016) 498-525;
      (e) P. Gandeepan, C. Cheng, Acc. Chem. Res. 48(2015) 1194-1206.

    10. [10]

      (a) L. Ackermann, Acc. Chem. Res. 47(2014) 281-295;
      (b) C. Bruneau, P. H. Dixneuf, Top. Organomet. Chem. 55(2016) 137-188;
      (c) S. Dana, M. R. Yadav, A. K. Sahoo, Top. Organomet. Chem. 55(2016) 189-216;
      (d) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 112(2012) 5879-5918.

    11. [11]

      Bin. Li, H. Feng, S. Xu, B. Wang, Chem. Eur. J. 17(2011) 12573-12577.  doi: 10.1002/chem.201102445

    12. [12]

      L. Ackermann, A.V. Lygin, N. Hofmann, Angew. Chem. Int. Ed. 50(2011) 6379-6382.  doi: 10.1002/anie.201101943

    13. [13]

      L. Ackermann, S. Fenner, Org. Lett. 13(2011) 6548-6551.  doi: 10.1021/ol202861k

    14. [14]

      F. Yang, L. Ackermann, J. Org. Chem. 79(2014) 12070-12082.  doi: 10.1021/jo501884v

    15. [15]

      B. Li, J. Ma, N. Wang, et al., Org. Lett. 14(2012) 736-739.  doi: 10.1021/ol2032575

    16. [16]

      S. Nakanowatari, L. Ackermann, Chem. Eur. J. 21(2015) 16246-16251.  doi: 10.1002/chem.201502785

    17. [17]

      K.K. Gollapelli, S. Kallepu, N. Govindappa, J.B. Nanubolub, R. Chegondi, Chem. Sci. 7(2016) 4748-4753.  doi: 10.1039/C6SC01456A

    18. [18]

      T.Y. Fukui, P. Liu, Q. Liu, et al., J. Am. Chem. Soc. 136(2014) 15607-15614.  doi: 10.1021/ja5072702

    19. [19]

      X. Wu, B. Wang, S. Zhou, Y. Zhou, H. Liu, ACS Catal. 7(2017) 2494-2499.  doi: 10.1021/acscatal.7b00031

    20. [20]

      X. Wu, B. Wang, Y. Zhou, H. Liu, Org. Lett. 19(2017) 1294-1297.  doi: 10.1021/acs.orglett.7b00089

    21. [21]

      C. Kornhaaß, J. Li, L. Ackermann, J. Org. Chem. 77(2012) 9190-9198.  doi: 10.1021/jo301768b

    22. [22]

      R.K. Chinnagolla, S. Pimparkar, M. Jeganmohan, Org. Lett.14(2012) 3032-3035.  doi: 10.1021/ol301091z

    23. [23]

      R.K. Chinnagolla, S. Pimparkar, M. Jeganmohan, Chem. Commun. 49(2013) 3703-3705.  doi: 10.1039/c3cc41269e

    24. [24]

      C. Kornhaaß, C. Kuper, L. Ackermanna, Adv. Synth. Catal. 356(2014) 1619-1624.  doi: 10.1002/adsc.v356.7

    25. [25]

      Z. Zhou, G. Liu, Y. Shen, X. Lu, Org. Chem. Front. 1(2014) 1161-1165.  doi: 10.1039/C4QO00196F

    26. [26]

      (a) G. Liu, Y. Shen, Z. Zhou, X. Lu, Angew. Chem. 125(2013) 6149-6153;
      (b) Y. Shen, G. Liu, Z. Zhou, X. Lu, Org. Lett. 15(2013) 3366-3369.

    27. [27]

      Z. Zhang, H. Jiang, Y. Huang, Org. Lett. 16(2014) 5976-5979.  doi: 10.1021/ol502998n

    28. [28]

      S. Zhou, J. Wang, P. Chen, K. Chen, J. Zhu, Chem. Eur. J. 22(2016) 14508-14512.  doi: 10.1002/chem.201602936

    29. [29]

      P.P. Kaishap, B. Sarma, S. Gogoi, Chem. Commun. 52(2016) 9809-9812.  doi: 10.1039/C6CC04461A

    30. [30]

      J. Zhang, A. Ugrinov, P. Zhao, Angew. Chem. Int. Ed. 52(2013) 6681-6684.  doi: 10.1002/anie.v52.26

    31. [31]

      D.N. Tran, N. Cramer, Angew. Chem. Int. Ed. 50(2011) 11098-11102.  doi: 10.1002/anie.v50.47

  • 加载中
    1. [1]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    2. [2]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    3. [3]

      Xinghao CaiChen MaYing KangYuqiang RenXue MengWei LuShiming FanShouxin Liu . Nickel-catalyzed C(sp2)–H alkynylation of free α-substituted benzylamines using a transient directing group. Chinese Chemical Letters, 2025, 36(10): 110901-. doi: 10.1016/j.cclet.2025.110901

    4. [4]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    5. [5]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    6. [6]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    7. [7]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    8. [8]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    9. [9]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    10. [10]

      Yan-Cui WenJia-Cheng HouQian ZhouSheng-Hua WangJun JiangZi YangHai-Tao ZhuZu-Li WangWei-Min He . Linear paired electrolysis enables redox-neutral benzylation of N-heteroarenes with benzyl halides using ion resin as the recyclable electrolyte. Chinese Chemical Letters, 2025, 36(12): 111795-. doi: 10.1016/j.cclet.2025.111795

    11. [11]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    12. [12]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    13. [13]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    14. [14]

      Junhua LiTianci ShenYahui ZhuangYu FuYian Shi . Pd-Catalyzed highly regioselective migratory hydroesterification of internal olefins with formates. Chinese Chemical Letters, 2025, 36(7): 110599-. doi: 10.1016/j.cclet.2024.110599

    15. [15]

      Aiping LiangChaolin LiChen LingHengpan DuanWenhui Wang . CoTiO3 for highly efficient peroxymonosulfate activation: The critical role of Co–O–Ti bond for rapid redox cycles of Co2+/Co3+. Chinese Chemical Letters, 2025, 36(10): 110788-. doi: 10.1016/j.cclet.2024.110788

    16. [16]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    17. [17]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    18. [18]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    19. [19]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    20. [20]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

Metrics
  • PDF Downloads(7)
  • Abstract views(1278)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return