Citation: Li Wen-Bo, Luo Wei-Jian, Li Kai-Xuan, Yuan Wang-Zhang, Zhang Yong-Ming. Aggregation-induced phosphorescence and mechanochromic luminescence of a tetraphenylethene-based gold(Ⅰ) isocyanide complex[J]. Chinese Chemical Letters, ;2017, 28(6): 1300-1305. doi: 10.1016/j.cclet.2017.04.008 shu

Aggregation-induced phosphorescence and mechanochromic luminescence of a tetraphenylethene-based gold(Ⅰ) isocyanide complex

  • Corresponding author: Yuan Wang-Zhang, wzhyuan@sjtu.edu.cn Zhang Yong-Ming, ymzsjtu@gmail.com
  • Received Date: 4 January 2017
    Revised Date: 21 February 2017
    Accepted Date: 10 April 2017
    Available Online: 17 June 2017

Figures(7)

  • In this study, a new twisting gold(Ⅰ) isocyanide complex based on tetraphenylethene (TPE), TPE-NC-Au, was designed and synthesized. It exhibits aggregation induced phosphorescence (AIP) characteristics, owing to the incorporation of Au moiety and conformation rigidification in the aggregated states. Moreover, the emission color of the crystalline solid of TPE-NC-Au changes from blue (454 nm) to green (500 nm) in response to mechanical grinding, due to the combined effects of conformation planarization, enhanced ππ stacking, as well as the emergence of aurophilic interactions in the ground amorphous state. Notably, the emission color can be restored upon solvent fuming, associating with the reconstruction of crystalline lattices. The AIP and switchable mechanochromism of TPE-NC-Au make it suitable for potential applications in bioimaging, sensing, and optoelectronic devices.
  • 加载中
    1. [1]

      Li C.Y., Tang X., Zhang L.Q.. Reversible luminescence switching of an organic solid:controllable on-off persistent room temperature phosphorescence and stimulated multiple fluorescence conversion[J]. Adv. Opt. Mater., 2015,3:1184-1190. doi: 10.1002/adom.v3.9

    2. [2]

      Zhang J.J., Zou Q., Tian H.. Photochromic materials:more than meets the eye[J]. Adv. Mater., 2013,25:378-399. doi: 10.1002/adma.201201521

    3. [3]

      Mei J., Wang J., Qin A.J.. Construction of soft porous crystal with silole derivative:strategy of framework design, multiple structural transformability and mechanofluorochromism[J]. J. Mater. Chem., 2012,22:4290-4298. doi: 10.1039/C1JM12673C

    4. [4]

      Dou C.D., Chen D., Iqbal J.. Multistimuli-responsive benzothiadiazolecored phenylene vinylene derivative with nanoassembly properties[J]. Langmuir, 2011,27:6323-6329. doi: 10.1021/la200382b

    5. [5]

      Zhang G.Q., Lu J.W., Fraser C.L.. Mechanochromic luminescence quenching:force-enhanced singlet-to-triplet intersystem crossing for iodide-substituted difluoroboron-dibenzoylmethane-dodecane in the solid state[J]. Inorg. Chem., 2010,49:10747-10749. doi: 10.1021/ic902591s

    6. [6]

      Luo J., Li L.Y., Song Y.L.. A piezochromic luminescent complex:mechanical force induced patterning with a high contrast ratio[J]. Chem. Eur. J., 2011,17:10515-10519. doi: 10.1002/chem.201101284

    7. [7]

      Chi Z., Zhang X.Q., Xu B.J.. Recent advances in organic mechanofluorochromic materials[J]. Chem. Soc. Rev., 2012,41:3878-3896. doi: 10.1039/c2cs35016e

    8. [8]

      Qi Q.K., Qian J.Y., Tan X.. Remarkable turn-on and color-tuned piezochromic luminescence:mechanically switching intramolecular charge transfer in molecular crystals[J]. Adv. Funct. Mater., 2015,25:4005-4010. doi: 10.1002/adfm.v25.26

    9. [9]

      Yuan W.Z., Tan Y.Q., Gong Y.Y.. Synergy between twisted conformation and effective intermolecular interactions:strategy for efficient mechanochromic luminogens with high contrast[J]. Adv. Mater., 2013,25:2837-2843. doi: 10.1002/adma.201205043

    10. [10]

      Dong Y.J., Xu B., Zhang J.B.. Piezochromic luminescence based on the molecular aggregation of 9, 10-Bis ((E)-2-(pyrid-2-yl) vinyl) anthracene[J]. Angew. Chem., 2012,124:10940-10943. doi: 10.1002/ange.v124.43

    11. [11]

      Ma Z.Y., Wang Z.J., Teng M.J.. Mechanically induced multicolor change of luminescent materials[J]. Chem. Phys. Chem., 2015,16:1811-1828. doi: 10.1002/cphc.v16.9

    12. [12]

      Shi J.Q., Zhao W.J., Li C.H.. Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli[J]. Chin. Sci. Bull., 2013,58:2723-2727. doi: 10.1007/s11434-013-5868-1

    13. [13]

      Wang Z.J., Ma Z.Y., Wang Y.. A novel mechanochromic and photochromic polymer film:when rhodamine joins polyurethane[J]. Adv. Mater., 2015,27:6469-6474. doi: 10.1002/adma.201503424

    14. [14]

      Wang J., Mei J., Hu R.R.. Click synthesis, aggregation-induced emission, E/Z isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen[J]. J. Am. Chem. Soc., 2012,134:9956-9966. doi: 10.1021/ja208883h

    15. [15]

      Huang K.W., Wu H.Z., Shi M.. Reply to comment on 'aggregation-induced phosphorescent emission (AIPE) of iridium (Ⅲ) complexes':origin of the enhanced phosphorescence[J]. Chem. Commun., 2009:1243-1245.

    16. [16]

      Ouyang M., Zhan L.L., Lv X.J.. Clear piezochromic behaviors of AIE-active organic powders under hydrostatic pressure[J]. RSC Adv., 2016,6:1188-1193. doi: 10.1039/C5RA21218A

    17. [17]

      Yang J., Ren Z.C., Xie Z.L.. AIEgen with fluorescence-phosphorescence dual mechanoluminescence at room temperature[J]. Angew. Chem., 2017. doi: 10.1002/ange.201610453

    18. [18]

      Wang L., Ye K.Q., Zhang H.Y.. Organic materials with hydrostatic pressure induced mechanochromic properties[J]. Chin. Chem. Lett., 2016,27:1367-1375. doi: 10.1016/j.cclet.2016.06.049

    19. [19]

      Han J.Q., Sun J.Y., Li Y.P.. One-pot synthesis of a mechanochromic AIE luminogen:implication for rewritable optical data storage[J]. J. Mater. Chem. C., 2016,4:9287-9293. doi: 10.1039/C6TC03131E

    20. [20]

      Xu B.J., Li W.L., He J.J.. Achieving very bright mechanoluminescence from purely organic luminophores with aggregation-induced emission by crystal design[J]. Chem. Sci., 2016,7:5307-5312. doi: 10.1039/C6SC01325B

    21. [21]

      Shi C.X., Guo Z.Q., Yan Y.L.. Self-assembly solid-state enhanced red emission of quinolinemalononitrile:optical waveguides and stimuli response[J]. ACS Appl. Mat. Interfaces., 2012,5:192-198.

    22. [22]

      Xie T.Q., Zhang B.C., Zhang X.P.. AIE-active β-diketones containing pyridiniums:fluorogenic binding to cellulose and water-vapour-recoverable mechanochromic luminescence[J]. Mater. Chem. Front., 2017,1:693-696. doi: 10.1039/C6QM00187D

    23. [23]

      Shan G.G., Li H.B., Qin J.S.. Piezochromic luminescent (PCL) behavior and aggregation-induced emission (AIE) property of a new cationic iridium (Ⅲ) complex[J]. Dalton Trans., 2012,41:9590-9593. doi: 10.1039/c2dt31013a

    24. [24]

      Luo X.L., Li J.N., Li C.H.. Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli[J]. Adv. Mater., 2011,23:3261-3265. doi: 10.1002/adma.201101059

    25. [25]

      Zhang X.Q., Chi Z.G., Zhang Y.. Recent advances in mechanochromic luminescent metal complexes[J]. J. Mater. Chem. C., 2013,1:3376-3390. doi: 10.1039/c3tc30316k

    26. [26]

      Zhang X., Wang J.Y., Ni J.. Vapochromic and mechanochromic phosphorescence materials based on a platinus(Ⅱ) complex with trifluoromethylacetylide[J]. Inorg. Chem., 2012,51:5569-5579. doi: 10.1021/ic202421d

    27. [27]

      King K.A., Spellane P.J., Watts R.J.. Excited-state properties of a triply orthometalated iridium(Ⅲ) complex[J]. J. Am. Chem. Soc., 1985,107:1431-1432. doi: 10.1021/ja00291a064

    28. [28]

      Kawamura Y., Goushi K., Brooks J.. 100% phosphorescence quantum efficiency of Ir(Ⅲ) complexes in organic semiconductor films[J]. Appl. Phys. Lett., 2005,86071104. doi: 10.1063/1.1862777

    29. [29]

      Rodríguez L., Ferrer M., Crehuet R.. Correlation between photophysical parameters and gold-gold distances in gold(Ⅰ) (4-pyridyl) ethynyl complexes[J]. Inorg. Chem., 2012,51:7636-7641. doi: 10.1021/ic300609f

    30. [30]

      Seki T., Sakurada K., Muromoto M.. Photoinduced single-crystal-tosingle-crystal phase transition and photosalient effect of a gold(Ⅰ) isocyanide complex with shortening of intermolecular aurophilic bonds[J]. Chem. Sci., 2015,6:1491-1497. doi: 10.1039/C4SC02676D

    31. [31]

      Ito H., Saito T., Oshima N.. Reversible mechanochromic luminescence of[(C6F5Au)2(m-1, 4-diisocyanobenzene)[J]. J. Am. Chem. Soc., 2008,130:10044-10045. doi: 10.1021/ja8019356

    32. [32]

      Liang J.H., Chen Z., Yin J.. Aggregation-induced emission (AIE) behavior and thermochromic luminescence properties of a new gold(Ⅰ) complex[J]. Chem. Commun., 2013,49:3567-3569. doi: 10.1039/c3cc00157a

    33. [33]

      Seki T., Ozaki T., Okura T.. Interconsertible multiple photoluminescence color of a gold(Ⅰ) isocyanide complex in the solid state:solvent-induced blueshifted and mechano-responsive red-shifted photoluminescence[J]. Chem. Sci., 2015,6:2187-2195. doi: 10.1039/C4SC03960B

    34. [34]

      Zhao Z.J., Lam J.W.Y., Tang B.Z.. Tetraphenylethene:a versatile AIE building block for the construction of efficient luminescent materials for organic lightemitting diodes[J]. J. Mater. Chem., 2012,22:23723-23740.

    35. [35]

      Wang F., Li X., Wang S.. New π-conjugated cyanostilbene derivatives:synthesis, characterization and aggregation-induced emission[J]. Chin. Chem. Lett., 2016,27:1592-1596. doi: 10.1016/j.cclet.2016.04.020

    36. [36]

      Dong Y.Q., Lam J.W.Y., Qin A.J.. Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes[J]. Appl. Phys. Lett., 2007,91011111. doi: 10.1063/1.2753723

    37. [37]

      Duan X.F., Zeng J., Lü J.W.. Insights into the general and efficient cross McMurry reactions between ketones[J]. Org. Chem., 2006,71:9873-9876. doi: 10.1021/jo061644d

    38. [38]

      Leifert D., Daniliuc C.G., Studer A.. 6-Aroylated phenanthridines via base promoted homolytic aromatic substitution (BHAS)[J]. Org. Lett., 2013,15:6286-6289. doi: 10.1021/ol403147v

    39. [39]

      Seki T., Takamatsu Y., Ito H.. A screening approach for the discovery of mechanochromic gold(Ⅰ) isocyanide complexes with crystal-to-crystal phase transitions[J]. J. Am. Chem. Soc., 2016,138:6252-6260. doi: 10.1021/jacs.6b02409

    40. [40]

      Kawaguchi K., Seki T., Karatsu T.. Cholesterol-aided construction of distinct self-organized materials from a luminescent gold(Ⅰ)-isocyanide complex exhibiting mechanochromic luminescence[J]. Chem. Commun., 2013,49:11391-11393. doi: 10.1039/c3cc47162d

    41. [41]

      Szytuła A., Fus D., Penc B.. Electronic structure of RTX (R=Pr, Nd; T=Cu, Ag, Au; X=Ge, Sn) compounds[J]. J. Alloys Compd., 2001,317:340-346.  

    42. [42]

      Uson R., Laguna A., Laguna M.. Inorg[J]. Synth., 2007,26:85-91.

  • 加载中
    1. [1]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    2. [2]

      Yinghao ZhangKe ShaoYihang ZhuHaokun ZhangYinuo ZhuoHuihui BaoYeye AiYongguang Li . Unanticipated optical properties of π-conjugated cyclometalated Pt(Ⅱ) complexes for advanced information storage and anti-counterfeiting materials. Chinese Chemical Letters, 2025, 36(9): 110735-. doi: 10.1016/j.cclet.2024.110735

    3. [3]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    4. [4]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    5. [5]

      Tong-Tong ZhouGuan-Yu DingXue LiLi-Li WenXiao-Xu PangYing-Chen DuanJu-Yang HeGuo-Gang ShanZhong-Min Su . Design of near-infrared aggregation-induced emission photosensitizers by π-bridge engineering for boosting theranostic efficacy. Chinese Chemical Letters, 2025, 36(6): 110341-. doi: 10.1016/j.cclet.2024.110341

    6. [6]

      Min LiuBin FengFeiyi ChuDuoyang FanFan ZhengFei ChenWenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043

    7. [7]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    8. [8]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    9. [9]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    10. [10]

      Wen-Xuan SongYao-Yu CaiYing-Jie LiuShuang-Quan Zang . Cation-driven assembly of gold(Ⅰ) tweezers towards lighted circularly polarized phosphorescence. Chinese Chemical Letters, 2025, 36(9): 110326-. doi: 10.1016/j.cclet.2024.110326

    11. [11]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    12. [12]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    13. [13]

      Qiuyue LuMin ShanJiaqi YangZhongren XuYueyue LeiWukun Liu . A dinuclear gold(I) complex with bis(N-heterocyclic carbene) ligands potentiated immune responses against liver cancer via ROS-driven endoplasmic reticulum stress and ferroptosis. Chinese Chemical Letters, 2025, 36(12): 110940-. doi: 10.1016/j.cclet.2025.110940

    14. [14]

      Saisai YuanYiming ChenXijuan WangDegui ZhaoTengyang GaoCaiyun WeiChuanxiang ChenYang YangWenjing Hong . Decouple the intermolecular interaction by encapsulating an insulating sheath. Chinese Chemical Letters, 2025, 36(6): 110816-. doi: 10.1016/j.cclet.2025.110816

    15. [15]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    16. [16]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    17. [17]

      Wenya ChiRuiyao LiuWenbo ZhouWeilin LiYuan Yu . The mechanisms of interaction between biomaterials and cells/cellular microenvironment and the applications in neural injuries. Chinese Chemical Letters, 2025, 36(8): 110587-. doi: 10.1016/j.cclet.2024.110587

    18. [18]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    19. [19]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    20. [20]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

Metrics
  • PDF Downloads(1)
  • Abstract views(1815)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return