Citation: Hou Jing-Ru, Jin Di, Chen Bo, Si Lei-Lei, Jin Yue-Hua, Chen Li-Gong, Yan Xi-Long, Wang Bo-Wei, Li Yang. Two near-infrared highly sensitive cyanine fluorescent probes for pH monitoring[J]. Chinese Chemical Letters, ;2017, 28(8): 1681-1687. doi: 10.1016/j.cclet.2017.03.037 shu

Two near-infrared highly sensitive cyanine fluorescent probes for pH monitoring

  • Corresponding author: Wang Bo-Wei, bwwang@tju.edu.cn Li Yang, liyang777@tju.edu.cn
  • *Corresponding authors at: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
  • Received Date: 6 January 2017
    Revised Date: 20 February 2017
    Accepted Date: 26 March 2017
    Available Online: 30 August 2017

Figures(9)

  • Two near-infrared (NIR) pH-activated heptamethine indocyanine probes with quaternary ammonium unit were designed and synthesized. The absorption and emission titrations indicate that cationic structure improves the cyanine dye's aqueous solubility and these two probes exhibit highly sensitive response to pH in acid condition. Their fluorescence intensities both gradually increase about 25-fold from pH 7.60 to 3.00 with pKa values of 4.72 and 4.45 respectively, which are suitable for studying acidic organelles in living cells. Moreover, their fluorescence intensities are linearly proportional to pH values in the range of 5.50-4.00. These results are probably attributed to the protonation of the indole nitrogen atoms, which are verified by 1H NMR spectra. Furthermore, these two probes can achieve real-time imaging of cellular pH and detection of pH in situ in living HeLa cells due to their excellent properties, including good reversibility, desirable photostability, high selectivity, low cytotoxicity and remarkable membrane permeability.
  • 加载中
    1. [1]

      Yeh J.T., Venkatesan P., Wu S.P.. A highly selective turn-on fluorescent sensor for fluoride and its application in imaging of living cells[J]. New J. Chem., 2014,38:6198-6204. doi: 10.1039/C4NJ01486C

    2. [2]

      Lee H., Akers W., Bhushan K.. Near-infrared pH-activatable fluorescent probes for imaging primary and metastatic breast tumors[J]. Bioconjug. Chem., 2011,22:777-784. doi: 10.1021/bc100584d

    3. [3]

      Li C.Y., Kong X.F., Li Y.F.. Ratiometric and colorimetric fluorescent chemosensor for Ag+ based on tricarbocyanine[J]. Dyes Pigm., 2013,99:903-907. doi: 10.1016/j.dyepig.2013.07.032

    4. [4]

      Han Z.X., Zhu B.S., Wu T.L.. A fluorescent probe for Hg2+ sensing in solutions and living cells with a wide working pH range[J]. Chin. Chem. Lett., 2014,25:73-76. doi: 10.1016/j.cclet.2013.10.027

    5. [5]

      Maity D., Manna A.K., Karthigeyan D.. Visible-near-infrared and fluorescent copper sensors based on julolidine conjugates:selective detection and fluorescence imaging in living cells[J]. Chem. Eur. J., 2011,17:11152-11161. doi: 10.1002/chem.201101906

    6. [6]

      Wang C.C., Yan S.Y., Chen Y.Q.. Triphenylamine pyridine acetonitrile fluorogens with green emission for pH sensing and application in cells[J]. Chin. Chem. Lett., 2015,26:323-328. doi: 10.1016/j.cclet.2014.11.029

    7. [7]

      Shi W., Li X.H., Ma H.M.. Fluorescent probes and nanoparticles for intracellular sensing of pH values[J]. Methods Appl. Fluoresc, 2014,2042001. doi: 10.1088/2050-6120/2/4/042001

    8. [8]

      Lv H.S., Huang Sh.Y., Zhao B.X.. A new rhodamine B-based lysosomal pH fluorescent indicator[J]. Anal. Chim. Acta, 2013,788:177-182. doi: 10.1016/j.aca.2013.06.038

    9. [9]

      Cao X.J., Chen L.N., Zhang X.. A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells[J]. Anal. Chim. Acta, 2016,920:86-93. doi: 10.1016/j.aca.2016.03.029

    10. [10]

      Shen S.L., Chen X.P., Zhang X.F.. A rhodamine B-based lysosomal pH probe[J]. J. Mater. Chem. B, 2015,3:919-925.  

    11. [11]

      Zhang X.F., Zhang T., Shen S.L.. A ratiometric lysosomal pH probe based on the naphthalimide-rhodamine system[J]. J. Mater. Chem. B, 2015,3:3260-3266. doi: 10.1039/C4TB02082K

    12. [12]

      Zhang X.F., Zhang T., Shen S.L.. A ratiometric lysosomal pH probe based on the coumarin-rhodamine FRET system[J]. RSC Adv., 2015,5:49115-49121. doi: 10.1039/C5RA06246B

    13. [13]

      Asanuma D., Takaoka Y., Namiki S.. Acidic-pH-activatable fluorescence probes for visualizing exocytosis dynamics[J]. Angew. Chem., 2014,126:6199-6203. doi: 10.1002/ange.201402030

    14. [14]

      Han J.Y., Burgess K.. Fluorescent indicators for intracellular pH[J]. Chem. Rev., 2010,110:2709-2728. doi: 10.1021/cr900249z

    15. [15]

      Klohs J., Baeva N., Steinbrink J.. In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia[J]. J. Cerebr. Blood Flow Metab., 2009,29:1284-1292. doi: 10.1038/jcbfm.2009.51

    16. [16]

      Li X.Q., Yue Y.K., Wen Y.. Hemicyanine based fluorimetric and colorimetric pH probe and its application in bioimaging[J]. Dyes Pigm., 2016,134:291-296. doi: 10.1016/j.dyepig.2016.07.033

    17. [17]

      Tang B., Yu F., Li P.. A near-infrared neutral pH fluorescent probe for monitoring minor pH changes:imaging in living HepG2 and HL-7702 cells[J]. J. Am. Chem. Soc., 2009,131:3016-3023. doi: 10.1021/ja809149g

    18. [18]

      Su M.H., Liu Y., Ma H.M.. 1, 9-Dihydro-3-phenyl-4H-pyrazolo[3, 4-b] quinolin-4-one, a novel fluorescent probe for extreme pH measurement[J]. Chem. Commun., 2001,11:960-961.  

    19. [19]

      Wan Q.Q., Chen S.M., Shi W.. Lysosomal pH rise during heat shock monitored by a lysosome-targeting near-infrared ratiometric fluorescent probe[J]. Angew. Chem. Int. Ed., 2014,53:10916-10920. doi: 10.1002/anie.201405742

    20. [20]

      Yue Y.K., Huo F.J., Lee S.Y.. A review:the trend of progress about pH probes in cell application in recent years[J]. Analyst, 2017,142:30-41. doi: 10.1039/C6AN01942K

    21. [21]

      Yue Y.K., Huo F.J., Lee S.Y.. A dual colorimetric/fluorescence system for determining pH based on the nucleophilic addition reaction of an ohydroxymerocyanine dye[J]. Chem. Eur. J., 2016,22:1239-1243. doi: 10.1002/chem.201504395

    22. [22]

      Guo Z., Park S., Yoon J., Shin I.. Recent progress in the development of nearinfrared fluorescent probes for bioimaging applications[J]. Chem. Soc. Rev., 2014,43:16-29. doi: 10.1039/C3CS60271K

    23. [23]

      Stennett E.M., Ciuba M.A., Levitus M.. Photophysical processes in single molecule organic fluorescent probes[J]. Chem. Soc. Rev., 2014,43:1057-1075. doi: 10.1039/C3CS60211G

    24. [24]

      Shi W., Li X.H., Ma H.M.. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells[J]. Angew. Chem., 2012,124:6538-6541. doi: 10.1002/ange.201202533

    25. [25]

      Urano Y., Asanuma D., Hama Y.. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes[J]. Nat. Med., 2009,15:104-109. doi: 10.1038/nm.1854

    26. [26]

      Ma L.J., Cao W., Liu J.. A highly selective and sensitive fluorescence dualresponsive pH probe in water[J]. Sens. Actuators B, 2012,169:243-247. doi: 10.1016/j.snb.2012.04.076

    27. [27]

      Lv H.S., Liu J., Zhao J.. Highly selective and sensitive pH-responsive fluorescent probe in living Hela and HUVEC cells[J]. Sens. Actuators B, 2013,177:956-963. doi: 10.1016/j.snb.2012.12.014

    28. [28]

      Deng M., Yang C.D., Gong D.Y.. BODIPY-derived piperazidine fluorescent near-neutral pH indicator and its bioimaging[J]. Sens. Actuators B, 2016,232:492-498. doi: 10.1016/j.snb.2016.04.003

    29. [29]

      He L., Lin W., Xu Q., Wei H.. A unique type of pyrrole-based cyanine fluorophores with turn-on and ratiometric fluorescence signals at different pH regions for sensing pH in enzymes and living cells[J]. ACS Appl. Mater. Interfaces, 2014,6:22326-22333. doi: 10.1021/am506322h

    30. [30]

      Sun C.L., Wang P., Li L.S.. A new near-infrared neutral pH fluorescent probe for monitoring minor pH changes and its application in imaging of HepG2 cells[J]. Appl. Biochem. Biotechnol., 2014,172:1036-1044. doi: 10.1007/s12010-013-0573-8

    31. [31]

      Li X.H., Gao X.H., Shi W.. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes[J]. Chem. Rev., 2014,114:590-659. doi: 10.1021/cr300508p

    32. [32]

      Zhao X.X., Ge D., Dai X.. A water-soluble pH fluorescence probe based on quaternary ammonium salt for bioanalytical applications[J]. Spectrochim. Acta Part A, 2015,151:218-224. doi: 10.1016/j.saa.2015.06.111

    33. [33]

      Lee M.H., Park N., Yi C.. Mitochondria-immobilized pH-sensitive off-on fluorescent probe[J]. J. Am. Chem. Soc., 2014,136:14136-14142. doi: 10.1021/ja506301n

    34. [34]

      Mo R., Sun Q., Xue J.W.. Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery[J]. Adv. Mater., 2012,24:3659-3665. doi: 10.1002/adma.v24.27

    35. [35]

      Yu L., Wang Q.L., Li T.T., Chen L.G.. Preparation of a pH-sensitive polystyrene fluorescent microsphere based on a cyanine dye[J]. J. Chem. Res., 2012,36:632-634. doi: 10.3184/174751912X13466874476971

    36. [36]

      Zhao X., Li Y., Jin D.. A near-infrared multifunctional fluorescent probe with an inherent tumor-targeting property for bioimaging[J]. Chem. Commun., 2015,51:11721-11724. doi: 10.1039/C5CC03878B

    37. [37]

      Briggs M.S., Burns D.D., Cooper M.E.. A pH sensitive fluorescent cyanine dye for biological applications[J]. Chem. Commun, 2000:2323-2324.  

    38. [38]

      Darjee S.M., Bhatt K.D., Panchal U.S.. Scrupulous recognition of biologically important acids by fluorescent turn off-on" mechanism of thaicalix reduced silver nanoparticles[J]. Chin. Chem. Lett., 2017,28:312-318. doi: 10.1016/j.cclet.2016.07.026

    39. [39]

      Hong M.M., Liu A.F., Xu Y.. Synthesis and properties of three novel rhodamine-based fluorescent sensors for Hg2+[J]. Chin. Chem. Lett., 2016,27:989-992. doi: 10.1016/j.cclet.2016.03.027

    40. [40]

      Luo Q.J., Li Y.X., Zhan M.Q.. A highly sensitive, dual-signal assay based on rhodamine B covered silver nanoparticles for carbamate pesticides[J]. Chin. Chem. Lett., 2017,28:345-349. doi: 10.1016/j.cclet.2016.10.024

    41. [41]

      Niu W.F., Nan M., Fan L.. A novel pH fluorescent probe based on indocyanine for imaging of living cells[J]. Dyes Pigm., 2016,126:224-231. doi: 10.1016/j.dyepig.2015.11.027

  • 加载中
    1. [1]

      Dandan TangNingge XuYuyang FuWei PengJinsheng WuHeng LiuFabiao Yu . Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury. Chinese Chemical Letters, 2025, 36(5): 110082-. doi: 10.1016/j.cclet.2024.110082

    2. [2]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    3. [3]

      Xianzhu LuoFeifei YuRui WangTian SuPan LuoPengfei WenFabiao Yu . A near-infrared two-photon fluorescent probe for the detection of HClO in inflammatory and tumor-bearing mice. Chinese Chemical Letters, 2025, 36(7): 110531-. doi: 10.1016/j.cclet.2024.110531

    4. [4]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    5. [5]

      Xu QuBaohua JiHaocheng GongGuangwei WangLiang-Liang GaoJing ZhangJianjian ZhangYuan Guo . Dual-emissive near-infrared fluorogenic probe with enhanced cellular uptake capability for sensitive tracking of cellular polarity. Chinese Chemical Letters, 2025, 36(10): 110766-. doi: 10.1016/j.cclet.2024.110766

    6. [6]

      Keliang LiGuoqiang DongShanchao WuChunquan Sheng . Discovery of an activatable near-infrared fluorescent and theranostic PROTAC for tumor-targeted detecting and degrading of BRD4. Chinese Chemical Letters, 2025, 36(6): 110280-. doi: 10.1016/j.cclet.2024.110280

    7. [7]

      Wenping DongMo MaJingkang LiLanlan XuDejiang GaoPinyi MaDaqian Song . Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chinese Chemical Letters, 2025, 36(5): 110147-. doi: 10.1016/j.cclet.2024.110147

    8. [8]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    9. [9]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    10. [10]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    11. [11]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    12. [12]

      Shupeng HanCaiting DengMeichen ZhengLinwei YangHancun KongYongchao HeYinuo ZhengGuowei DengYu RenFeifei An . A GSH-responsive NIR-BODIPY fluorophore with large Stokes-shift for tumor specific fluorescence imaging and surgical guidance. Chinese Chemical Letters, 2025, 36(7): 110459-. doi: 10.1016/j.cclet.2024.110459

    13. [13]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    14. [14]

      Xianghan ZhangYuan QinHuaicong ZhangYutian CaoHaixing ZhuYingdi TangZimeng MaZehua LiJialin ZhouQunyan DongPeng YangYuqiong XiaZhongliang Wang . An aggregation-independent and rotor-specific TPE-cyanine probe for in vivo near-infrared fluorescent imaging. Chinese Chemical Letters, 2025, 36(9): 110715-. doi: 10.1016/j.cclet.2024.110715

    15. [15]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    16. [16]

      Zhouze ChenYujie YanJun LuoPengnian ShanChangyu LuFeng GuoWeilong Shi . Piezoelectric effect synergistically boosted NIR-driven photothermal-assisted photocatalytic hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 111302-. doi: 10.1016/j.cclet.2025.111302

    17. [17]

      Yueyan ZhangZhihai YangXia SuoRuicheng WangXuewei NieZafar MahmoodYanping HuoShi-Jian SuShaomin Ji . Tailoring luminescence properties of NIR-BODIPY emitters through donor engineering and intramolecular conformational locking for high-performance solution-processed OLEDs. Chinese Chemical Letters, 2025, 36(12): 111071-. doi: 10.1016/j.cclet.2025.111071

    18. [18]

      Tiancong ShiXi ChenXiao ZhouHongyi ZhangFuping HanLihan CaiWen SunJianjun DuJiangli FanXiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408

    19. [19]

      Mingrui ZhangLingyu JinYuda ZhuJunfeng KouBo LiuJing ChenXiaolin ZhongXianghua WuJunfeng ZhangWenxiu Ren . A near-infrared Ⅱ fluorescent dye based on oxanthracene: Real-time imaging of drug-induced acute liver injury and photothermal therapy for tumor. Chinese Chemical Letters, 2025, 36(10): 110772-. doi: 10.1016/j.cclet.2024.110772

    20. [20]

      Wanxin LiWenxing GaoMengyao WenZecheng HeLi Shang . Controllable synthesis of selenolate ligand-costabilized water-soluble near-infrared fluorescent gold nanoclusters for cell imaging. Chinese Chemical Letters, 2025, 36(10): 110803-. doi: 10.1016/j.cclet.2024.110803

Metrics
  • PDF Downloads(1)
  • Abstract views(1233)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return