Citation: Zhang Ting-Ting, Jiang Jing-Yang, Wang Yan-Hua. Supported bimetallic catalyst Pt-Pb/SiO2 for selective conversion of nitrobenzene to p-aminophenol in pressurized CO2/H2O system[J]. Chinese Chemical Letters, ;2017, 28(2): 307-311. doi: 10.1016/j.cclet.2016.07.029 shu

Supported bimetallic catalyst Pt-Pb/SiO2 for selective conversion of nitrobenzene to p-aminophenol in pressurized CO2/H2O system

  • Corresponding author: Jiang Jing-Yang, jyjiang@dlut.edu.cn
  • Received Date: 12 June 2016
    Revised Date: 13 July 2016
    Accepted Date: 16 July 2016
    Available Online: 29 February 2016

Figures(7)

  • Various supported Pt-Pb bimetallic catalysts were prepared and applied for the catalytic conversion of nitrobenzene to p-aminophenol in the environmentally benign pressurized CO2/H2O system. Among the bimetallic catalysts prepared, Pt-Pb/SiO2 is the best and nitrobenzene could be converted to paminophenol with a selectivity as high as 82% when the reaction was carried out using this catalyst at 110℃ under 5 MPa CO2 and 0.2 MPa H2.
  • 加载中
    1. [1]

      M.S. Kirk-Othmer, Encyclopedia of Chemical Technology, 4th edn., Wiley, New York, 1992.

    2. [2]

      E. Bamberger. Ueber das phenylhydroxylamin[J]. Ber. Dtsch. Chem. Ges., 1894,27:1548-1557. doi: 10.1002/(ISSN)1099-0682

    3. [3]

      D.C. Caskey, D.W. Chapman, Process for preparing p-aminophenol and alkyl substituted p-aminophenol, US 4571437.

    4. [4]

      S.F. Wang, Y.H. Ma, Y.J. Wang, W. Xue, X.Q. Zhao. Synthesis of p-aminophenol from the hydrogenation of nitrobenzene over metal-solid acid bifunctional catalyst[J]. J. Chem. Tech. Biotechnol., 2008,83:1466-1471. doi: 10.1002/jctb.v83:11

    5. [5]

      T. Komatsu, T. Hirose. Gas phase synthesis of para-aminophenol from nitrobenzene on Pt/zeolite catalysts[J]. Appl. Catal. A:Gen., 2004,276:95-102. doi: 10.1016/j.apcata.2004.07.044

    6. [6]

      S.F. Wang, B.B. He, Y.J. Wang, X.Q. Zhao. MgAPO-5-supported Pt-Pb-based novel catalyst for the hydrogenation of nitrobenzene to p-aminophenol[J]. Catal. Commun., 2012,24:109-113. doi: 10.1016/j.catcom.2012.03.024

    7. [7]

      T.T. Zhang, J.Y. Jiang, Y.H. Wang. Green route for the preparation of p-aminophenol from nitrobenzene by catalytic hydrogenation in pressurized CO2/H2O system[J]. Org. Process Res. Dev., 2015,19:2050-2054. doi: 10.1021/acs.oprd.5b00307

    8. [8]

      G. Gao, Y. Tao, J.Y. Jiang. Environmentally benign and selective reduction of nitroarenes with Fe in pressurized CO2-H2O medium[J]. Green Chem., 2008,10:439-441. doi: 10.1039/b719259b

    9. [9]

      S.J. Liu, Y.H. Wang, J.Y. Jiang, Z.L. Jin. The selective reduction of nitroarenes to Narylhydroxylamines using Zn in a CO2/H2O system[J]. Green Chem., 2009,11:1397-1400. doi: 10.1039/b906283a

    10. [10]

      C.O. Henke, J.V. Vaughen, Reduction of aryl nitro compounds, US 2198249.

    11. [11]

      L. Shi, X. Zhou, Industrial synthesis method of p-aminophenol, CN 1087623.

    12. [12]

      L.Y. Zou, Y.Y. Cui, W.L. Dai. Highly efficient Au/TiO2 catalyst for one-pot conversion of nitrobenzene to p-aminophenol in water media[J]. Chin. J. Chem., 2014,32:257-262. doi: 10.1002/cjoc.v32.3

    13. [13]

      C.V. Rode, M.J. Vaidya, R.V. Chaudhari, Single step hydrogenation of nitrobenzene to p-aminophenol, US 6403833.

    14. [14]

      Z. Dong, T. Wang, J. Zhao. Ni-silicides nanoparticles as substitute for noble metals for hydrogenation of nitrobenzene to p-aminophenol in sulfuric acid[J]. Appl. Catal. A:Gen., 2016,520:151-156. doi: 10.1016/j.apcata.2016.04.013

    15. [15]

      C.V. Rode, M.J. Vaidya, R.V. Chaudhari. Synthesis of p-aminophenol by catalytic hydrogenation of nitrobenzene[J]. Org. Process Res. Dev., 1999,3:465-470. doi: 10.1021/op990040r

    16. [16]

      S.K. Tanielyan, J.J. Nair, N. Marin. Hydrogenation of nitrobenzene to 4-aminophenol over supported platinum catalysts[J]. Org. Process Res. Dev., 2007,11:681-688. doi: 10.1021/op700049p

    17. [17]

      K.I. Min, J.S. Choi, Y.M. Chung. p-Aminophenol synthesis in an organic/aqueous system using Pt supported on mesoporous carbons[J]. Appl. Catal. A:Gen., 2008,337:97-104. doi: 10.1016/j.apcata.2007.12.004

    18. [18]

      P.L. Liu, Y.H. Hu, M. Ni, K.Y. You, H.N. Luo. Liquid phase hydrogenation of nitrobenzene to para-aminophenol over Pt/ZrO2 catalyst and SO42-/ZrO2-Al2O3 solid acid[J]. Catal. Lett., 2010,140:65-68. doi: 10.1007/s10562-010-0427-8

    19. [19]

      A. Deshpande, F. Figueras, M.L. Kantam. Environmentally friendly hydrogenation of nitrobenzene to p-aminophenol using heterogeneous catalysts[J]. J. Catal., 2010,275:250-256. doi: 10.1016/j.jcat.2010.08.005

    20. [20]

      P.N. Rylander, I.M. Karpenko, G.R. Pond, Process for preparing para-aminophenol, US 3715397.

    21. [21]

      E.L. Derrenbacker, Process for the selective preparation of p-aminophenol from nitrobenzene, US 4307249.

    22. [22]

      X.B. Shan, Y. Liu, Preparation of p-aminophenol from catalytic hydrogenation of nitrobenzene, CN 85103667.

    23. [23]

      H. Lindlar, R. Dubuis, Palladium catalyst for partial reduction of acetylenes, in:Organic Syntheses, John Wiley & Sons, Inc., New York, 2003, p. 89.

    24. [24]

      H. Lindlar. Ein neuer katalysator für selektive hydrierungen[J]. Helv. Chim. Acta, 1952,35:446-450. doi: 10.1002/hlca.19520350205

    25. [25]

      Y.S. Hwang, Y.S. Kang, B.C. Koo, et al., Method for selective hydrogenation acetylene alcohols, KR 2001082987.

    26. [26]

      T.L. Ho, S.H. Liu. Semihydrogenaticn of triple bonds in 1-alkene solutions[J]. Synth. Commun., 1987,17:969-973. doi: 10.1080/00397918708063955

    27. [27]

      J.C. Serrano-Ruiz, G.W. Huber, M.A. Sánchez-Castillo. Effect of Sn addition to Pt/CeO2-Al2O3 and Pt/Al2O3 catalysts:an XPS, 119Sn Mössbauer and microcalorimetry study[J]. J. Catal., 2006,241:378-388. doi: 10.1016/j.jcat.2006.05.005

    28. [28]

      M.Y. Yin, S.B. He, Z.K. Yu. Effect of alumina support on catalytic performance of Pt-Sn/Al2O3 catalysts in one-step synthesis of N-phenylbenzylamine from aniline and benzyl alcohol[J]. Chin. J. Catal., 2013,34:1534-1542. doi: 10.1016/S1872-2067(12)60608-1

    29. [29]

      G.D. Angel, G. Torres, V. Bertin. The role of lanthanum oxide in the formation of NO2 over Pt-Pb/Al2O3-La2O3 catalysts under lean-burn conditions[J]. Catal. Commun., 2006,7:232-235. doi: 10.1016/j.catcom.2005.10.012

    30. [30]

      S.A. Bocanegra, O.A. Scelza, S.R. de Miguel. Behavior of PtPb/MgAl2O4 catalysts with different Pb contents and trimetallic PtPbIn catalysts in n-butane dehydrogenation[J]. Appl. Catal. A:Gen., 2013,468:135-142. doi: 10.1016/j.apcata.2013.07.051

    31. [31]

      Y.Y. Huang, J.D. Cai, M.Y. Liu, Y.L. Guo. Fabrication of a novel PtPbBi/C catalyst for ethanol electro-oxidation in alkaline medium[J]. Electrochim. Acta, 2012,83:1-6. doi: 10.1016/j.electacta.2012.07.089

    32. [32]

      G.Q. Sun, Synthesis of p-Aminophenol by Catalytic Hydrogenation, Qingdao University of Science & Technology, Qingdao, 2008.

  • 加载中
    1. [1]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    2. [2]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    3. [3]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    4. [4]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    5. [5]

      Haoyu LuoJinsong ChenMengfei LuoHui MaShengyan Pu . Heterogeneous Fenton catalytic degradation of nitrobenzene by controlled-release nano calcium peroxide. Chinese Chemical Letters, 2025, 36(6): 110367-. doi: 10.1016/j.cclet.2024.110367

    6. [6]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    7. [7]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    8. [8]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    11. [11]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    12. [12]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    13. [13]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    14. [14]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    15. [15]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    16. [16]

      Hanhan ChenYahao SunMingyang ZhangPengtao MaJingping WangJingyang Niu . Self-assembly of cis-trans Ta/W mixed-addendum POMs based on hexalacunary [H2P2W12O48]12− building blocks. Chinese Chemical Letters, 2025, 36(9): 110329-. doi: 10.1016/j.cclet.2024.110329

    17. [17]

      Tianyao HeGan LiXiaoqiang XieDong HanYunyue LengQiuli ZhangWenming LiuGuobo LiHongxiang ZhangShan HuangTing HuangHonggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137

    18. [18]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    19. [19]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    20. [20]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(1)
  • Abstract views(1285)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return