Citation: Fu Ju, Tan Xiao-Hong, Li Yao-Hua, Song Xin-Jian. A nanosilica/exfoliated graphene composite film-modified electrode for sensitive detection of methyl parathion[J]. Chinese Chemical Letters, ;2016, 27(9): 1541-1546. doi: 10.1016/j.cclet.2016.07.007 shu

A nanosilica/exfoliated graphene composite film-modified electrode for sensitive detection of methyl parathion

  • Corresponding author: Song Xin-Jian, whxjsong@163.com
  • Received Date: 16 May 2016
    Revised Date: 22 June 2016
    Accepted Date: 4 July 2016
    Available Online: 16 September 2016

Figures(7)

  • Graphene nanosheets (GS) were easily prepared through liquid-phase exfoliation of graphite powder in N, N-dimethylformamide (DMF) with the assistance of sodium citrate. Then, GS was coated onto a glassy carbon electrode (GCE) surface by drop to fabricate a GS/GCE nanointerface. Subsequently, by using tetraethylorthosilicate sol as precursor, nanosilica was electrochemically deposited onto the GS/GCE surface to produce a nanocomposite film electrode (nanosilica/GS/GCE). Electrochemical behaviors of methyl parathion (MP) on the nanosilica/GS/GCE surface were investigated thoroughly. It was found that the nanosilica/GS nanocomposites can improve the redox peak currents of MP significantly due to the synergetic effect. The oxidation peak current was linearly related to MP concentration in the range from 0.0005 μmol/L to 5.6 μmol/L. The detection limit was calculated to be 0.07 nmol/L (S/N=3). The developed method was used to determine MP in real samples. The recoveries were in the range from 95.4% to 104.2%, demonstrating satisfactory results.
  • 加载中
    1. [1]

      Manzanilla-Cano J.A., Reyes-Salas E.O., Barceló-Quintal M.H.. Electrochemical elimination of the pesticide methylparathion in an aqueous medium[J]. Int. J. Environ. Anal. Chem., 1999,75:387-405. doi: 10.1080/03067319908047325

    2. [2]

      M.B.Čolović , Krstić D.Z., Vasić V.M.. Organophosphorus insecticides:toxic effects and bioanalytical tests for evaluating toxicity during degradation processes[J]. Hem. Ind., 2013,67:217-230. doi: 10.2298/HEMIND120323060C

    3. [3]

      Hou J., Dong J., Zhu H.. A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots[J]. Biosens. Bioelectron., 2015,68:20-26. doi: 10.1016/j.bios.2014.12.037

    4. [4]

      Q. Zhou, G. Meng, N. Wu, et al., Dipping into a drink:Basil-seed supported silver nanoparticles as surface-enhanced Raman scattering substrates for toxic molecule detection, Sensor. Actuat. B-Chem. 233(2016), 477-452.

    5. [5]

      Cinelli G., Avino P., Notardonato I.. Ultrasound-vortex-assisted dispersive liquid-liquid microextraction coupled with gas chromatography with a nitrogen-phosphorus detector for simultaneous and rapid determination of organophosphorus pesticides and triazines in wine[J]. Anal. Methods, 2014,6:782-790. doi: 10.1039/C3AY41641K

    6. [6]

      Zhang Y., Lee H.K.. Determination of ultraviolet filters in environmental water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction[J]. J. Chromatogr. A, 2013,1271:56-61. doi: 10.1016/j.chroma.2012.11.047

    7. [7]

      Zhang J., Wang J., Yang L.. Ligand replacement induced chemiluminescence for selective detection of an organophosphorus pesticide using bifunctional AuFe3O4 dumbbell-like nanoparticles[J]. Chem. Commun., 2014,50:15870-15873. doi: 10.1039/C4CC07430K

    8. [8]

      Thota R., Ganesh V.. Selective and sensitive electrochemical detection of methyl parathion using chemically modified overhead projector sheets as flexible electrodes[J]. Sensor. Actuat. B-Chem., 2016,277:169-177.  

    9. [9]

      Fu X.C., Zhang J., Tao Y.Y.. Three-dimensional mono-6-thio-β-cyclodextrin covalently functionalized gold nanoparticle/single-wall carbon nanotube hybrids for highly sensitive and selective electrochemical determination of methyl parathion[J]. Electrochim. Acta, 2015,153:12-18. doi: 10.1016/j.electacta.2014.11.144

    10. [10]

      Walcarius A., Minteer S.D., Wang J.. Nanomaterials for bio-functionalized electrodes:recent trends[J]. J. Mater. Chem. B, 2013,1:4878-4908. doi: 10.1039/c3tb20881h

    11. [11]

      Lu X.B., Wen Z.H., Li J.H.. Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors[J]. Biomaterials, 2006,27:5740-5747. doi: 10.1016/j.biomaterials.2006.07.026

    12. [12]

      Abraham S., Nirala N.R., Pandey S.. Functional graphene-gold nanoparticle hybrid system for enhanced electrochemical biosensing of free cholesterol[J]. Anal. Methods, 2015,7:3993-4002. doi: 10.1039/C5AY00050E

    13. [13]

      Vida Y., Montañez M.I., Collado D.. Dendrimeric antigen-silica particle composites:an innovative approach for IgE quantification[J]. J. Mater. Chem. B, 2013,1:3044-3050. doi: 10.1039/c3tb20548g

    14. [14]

      Dave B.C., Dunn B., Valentine J.S.. Sol-gel encapsulation methods for biosensors[J]. Anal. Chem., 1994,66:1120-1127. doi: 10.1021/ac00094a001

    15. [15]

      Yang H., Zhu Y.. Size dependence of SiO2 particles enhanced glucose biosensor[J]. Talanta, 2006,68:569-574. doi: 10.1016/j.talanta.2005.04.057

    16. [16]

      Dai Z., Liu S., Ju H.. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix[J]. Biosens. Bioelectron., 2004,19:861-867. doi: 10.1016/j.bios.2003.08.024

    17. [17]

      Tang L.H., Wang Y., Li Y.M.. Preparation, structure, and electrochemical properties of reduced graphene sheet films[J]. Adv. Funct. Mater., 2009,19:2782-2789. doi: 10.1002/adfm.v19:17

    18. [18]

      Zhang Q., Zhang D., Lu Y.. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles[J]. Biosens. Bioelectron., 2016,77:963-970. doi: 10.1016/j.bios.2015.10.065

    19. [19]

      Chen Y., Dou X.W., Zhang M.M.. The fabrication of flower-like graphene/octadecylamine composites[J]. Chin. Chem. Lett., 2015,26:1144-1146. doi: 10.1016/j.cclet.2015.05.045

    20. [20]

      Mirabedini M., Motamedi E., Kassaee M.Z.. Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A3-coupling synthesis of propargylamines[J]. Chin. Chem. Lett., 2015,26:1085-1090. doi: 10.1016/j.cclet.2015.05.021

    21. [21]

      Y. Jang, H. Jeong, D. Kim, et al., Electrical characterization of benzenedithiolate molecular electronic devices with graphene electrodes on rigid and flexible substrates, Nanotechnology 27(2016) 145301.

    22. [22]

      Chen D., Feng H.B., Li J.H.. Graphene oxide:preparation, functionalization, and electrochemical applications[J]. Chem. Rev., 2012,112:6027-6053. doi: 10.1021/cr300115g

    23. [23]

      Zhang L.B., Yang S.R., Wang J.Q.. A facile preparation and electrochemical properties of nickel based compound-graphene sheet composites for supercapacitors[J]. Chin. Chem. Lett., 2015,26:522-528. doi: 10.1016/j.cclet.2015.01.025

    24. [24]

      Keeley G.P., McEvoy N., Nolan H.. Electroanalytical sensing properties of pristine and functionalized multilayer graphene[J]. Chem. Mater., 2014,26:1807-1812. doi: 10.1021/cm403501r

    25. [25]

      Yang W., Chen G., Shi Z.. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nat. Mater., 2013,12:792-797. doi: 10.1038/nmat3695

    26. [26]

      Wang Y., Lu J., Tang L.H.. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds[J]. Anal. Chem., 2009,81:9710-9715. doi: 10.1021/ac901935a

    27. [27]

      Sun J.J., Yang N.X., Sun Z.. Fully converting graphite into graphene oxide hydrogels by preoxidation with impure manganese dioxide[J]. ACS Appl. Mater. Inter., 2015,7:21356-21363. doi: 10.1021/acsami.5b06008

    28. [28]

      Xu M., Zhang W., Yang Z.. One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots[J]. Nanoscale, 2015,7:10527-10534. doi: 10.1039/C5NR02198G

    29. [29]

      Ciesielski A., Samorı P.. Graphene via sonication assisted liquid-phase exfoliation[J]. Chem. Soc. Rev., 2014,43:381-398. doi: 10.1039/C3CS60217F

    30. [30]

      Wu C., Tang Y., Wan C.. Enhanced-oxidation and highly-sensitive detection of acetaminophen, guanine and adenine using NMP-exfoliated graphene nanosheets-modified electrode[J]. Electrochim. Acta, 2015,166:285-292. doi: 10.1016/j.electacta.2015.03.088

    31. [31]

      Wu C., Cheng Q., Wu K.. Electrochemical functionalization of N-methyl-2-pyrrolidone-exfoliated graphene nanosheets as highly sensitive analytical platform for phenols[J]. Anal. Chem., 2015,87:3294-3299. doi: 10.1021/ac504309j

    32. [32]

      Yang X., Long J., Sun D.. Highly-sensitive electrochemical determination of rutin using NMP-exfoliated graphene nanosheets-modified electrode[J]. Electroanalysis, 2016,28:83-87. doi: 10.1002/elan.v28.1

    33. [33]

      Du W.C., Lu J., Sun P.P.. Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene[J]. Chem. Phys. Lett. 568-, 2013,569:198-201.  

    34. [34]

      De S., King P.J., Lotya M.. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions[J]. Small, 2010,6:458-464. doi: 10.1002/smll.v6:3

    35. [35]

      Kudin K.N., Ozbas B., Schniepp H.C.. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Lett., 2008,8:36-41. doi: 10.1021/nl071822y

    36. [36]

      Allen M.J., Tung V.C., Kaner R.B.. Honeycomb carbon a review of graphene[J]. Chem. Rev., 2010,110:132-145. doi: 10.1021/cr900070d

    37. [37]

      Bermudez V.M.. Effect of humidity on the interaction of dimethyl methylphosphonate (DMMP) vapor with SiO2 and Al2O3 surfaces, studied using infrared attenuated total reflection spectroscopy[J]. Langmuir, 2010,26:18144-18154. doi: 10.1021/la103381r

    38. [38]

      Xu J., Zhang J., Liu X.. Hydrothermal synthesis of copper hydroxyphosphate hierarchical architectures[J]. Chem. Eng. Technol., 2012,35:2189-2194. doi: 10.1002/ceat.v35.12

    39. [39]

      N. Yan, F. Wang, H. Zhong, et al., Hollow porous SiO2 nanocubes towards highperformance anodes for lithium-ion batteries, Sci. Rep.-UK 3(2013) 1568.

    40. [40]

      Liu G.D., Lin Y.H.. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents[J]. Anal. Chem., 2005,77:5894-5901. doi: 10.1021/ac050791t

    41. [41]

      Li C., Wang Z., Zhan G.. Electrochemical investigation of methyl parathion at goldsodium dodecylbenzene sulfonate nanoparticles modified glassy carbon electrode[J]. Colloids Surf. B-Biointerfaces, 2011,82:40-45. doi: 10.1016/j.colsurfb.2010.08.011

    42. [42]

      Tan X.H., Zhang S.H., Song X.J.. A nanostructured poly(2-mercapto-4-amino-5-cyano-6-phenylpyrimidine) film for sensitive determination of methyl parathion[J]. Nanosci. Nanotechnol. Lett., 2014,6:333-338. doi: 10.1166/nnl.2014.1763

    43. [43]

      Zhao L., Zhao F., Zeng B.. Electrochemical determination of methyl parathion using a molecularly imprinted polymer-ionic liquid-graphene composite film coated electrode[J]. Sensor. Actuat. B-Chem., 2013,176:818-824. doi: 10.1016/j.snb.2012.10.003

    44. [44]

      Pan D., Ma S., Bo X.. Electrochemical behavior of methyl parathion and its sensitive determination at a glassy carbon electrode modified with ordered mesoporous carbon[J]. Microchim. Acta, 2011,173:215-221. doi: 10.1007/s00604-011-0551-1

    45. [45]

      Tan X., Li B., Liew K.Y.. Electrochemical fabrication of molecularly imprinted porous silicate film electrode for fast and selective response of methyl parathion[J]. Biosens. Bioelectron., 2010,26:868-871. doi: 10.1016/j.bios.2010.07.085

    46. [46]

      Liu Z.M., Jing Y.F., Wang Z.L.. Highly sensitive electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto graphene-Fe3O4 nanocomposite[J]. Sens. Lett., 2013,11:531-538. doi: 10.1166/sl.2013.2762

    47. [47]

      Zeng Y., Yu D., Yu Y.. Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes-poly (acrylamide) nanocomposite film modified electrode[J]. J. Hazard. Mater., 2012,217:315-322.  

    48. [48]

      Jin H., Liu Y., Wei M.. Determination of organophosphorus pesticides based on BDD electrode modified with Au/chitosan fiber[J]. J. Chin. Chem. Soc., 2013,60:297-302. doi: 10.1002/jccs.v60.3

  • 加载中
    1. [1]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    2. [2]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    5. [5]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    6. [6]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    7. [7]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    8. [8]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    9. [9]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    10. [10]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    11. [11]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    12. [12]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    13. [13]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    14. [14]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    15. [15]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    16. [16]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    17. [17]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    18. [18]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    19. [19]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    20. [20]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

Metrics
  • PDF Downloads(0)
  • Abstract views(680)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return