A nanosilica/exfoliated graphene composite film-modified electrode for sensitive detection of methyl parathion
- Corresponding author: Song Xin-Jian, whxjsong@163.com
Citation:
Fu Ju, Tan Xiao-Hong, Li Yao-Hua, Song Xin-Jian. A nanosilica/exfoliated graphene composite film-modified electrode for sensitive detection of methyl parathion[J]. Chinese Chemical Letters,
;2016, 27(9): 1541-1546.
doi:
10.1016/j.cclet.2016.07.007
Manzanilla-Cano J.A., Reyes-Salas E.O., Barceló-Quintal M.H.. Electrochemical elimination of the pesticide methylparathion in an aqueous medium[J]. Int. J. Environ. Anal. Chem., 1999,75:387-405. doi: 10.1080/03067319908047325
M.B.Čolović , Krstić D.Z., Vasić V.M.. Organophosphorus insecticides:toxic effects and bioanalytical tests for evaluating toxicity during degradation processes[J]. Hem. Ind., 2013,67:217-230. doi: 10.2298/HEMIND120323060C
Hou J., Dong J., Zhu H.. A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots[J]. Biosens. Bioelectron., 2015,68:20-26. doi: 10.1016/j.bios.2014.12.037
Q. Zhou, G. Meng, N. Wu, et al., Dipping into a drink:Basil-seed supported silver nanoparticles as surface-enhanced Raman scattering substrates for toxic molecule detection, Sensor. Actuat. B-Chem. 233(2016), 477-452.
Cinelli G., Avino P., Notardonato I.. Ultrasound-vortex-assisted dispersive liquid-liquid microextraction coupled with gas chromatography with a nitrogen-phosphorus detector for simultaneous and rapid determination of organophosphorus pesticides and triazines in wine[J]. Anal. Methods, 2014,6:782-790. doi: 10.1039/C3AY41641K
Zhang Y., Lee H.K.. Determination of ultraviolet filters in environmental water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction[J]. J. Chromatogr. A, 2013,1271:56-61. doi: 10.1016/j.chroma.2012.11.047
Zhang J., Wang J., Yang L.. Ligand replacement induced chemiluminescence for selective detection of an organophosphorus pesticide using bifunctional AuFe3O4 dumbbell-like nanoparticles[J]. Chem. Commun., 2014,50:15870-15873. doi: 10.1039/C4CC07430K
Thota R., Ganesh V.. Selective and sensitive electrochemical detection of methyl parathion using chemically modified overhead projector sheets as flexible electrodes[J]. Sensor. Actuat. B-Chem., 2016,277:169-177.
Fu X.C., Zhang J., Tao Y.Y.. Three-dimensional mono-6-thio-β-cyclodextrin covalently functionalized gold nanoparticle/single-wall carbon nanotube hybrids for highly sensitive and selective electrochemical determination of methyl parathion[J]. Electrochim. Acta, 2015,153:12-18. doi: 10.1016/j.electacta.2014.11.144
Walcarius A., Minteer S.D., Wang J.. Nanomaterials for bio-functionalized electrodes:recent trends[J]. J. Mater. Chem. B, 2013,1:4878-4908. doi: 10.1039/c3tb20881h
Lu X.B., Wen Z.H., Li J.H.. Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors[J]. Biomaterials, 2006,27:5740-5747. doi: 10.1016/j.biomaterials.2006.07.026
Abraham S., Nirala N.R., Pandey S.. Functional graphene-gold nanoparticle hybrid system for enhanced electrochemical biosensing of free cholesterol[J]. Anal. Methods, 2015,7:3993-4002. doi: 10.1039/C5AY00050E
Vida Y., Montañez M.I., Collado D.. Dendrimeric antigen-silica particle composites:an innovative approach for IgE quantification[J]. J. Mater. Chem. B, 2013,1:3044-3050. doi: 10.1039/c3tb20548g
Dave B.C., Dunn B., Valentine J.S.. Sol-gel encapsulation methods for biosensors[J]. Anal. Chem., 1994,66:1120-1127. doi: 10.1021/ac00094a001
Yang H., Zhu Y.. Size dependence of SiO2 particles enhanced glucose biosensor[J]. Talanta, 2006,68:569-574. doi: 10.1016/j.talanta.2005.04.057
Dai Z., Liu S., Ju H.. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix[J]. Biosens. Bioelectron., 2004,19:861-867. doi: 10.1016/j.bios.2003.08.024
Tang L.H., Wang Y., Li Y.M.. Preparation, structure, and electrochemical properties of reduced graphene sheet films[J]. Adv. Funct. Mater., 2009,19:2782-2789. doi: 10.1002/adfm.v19:17
Zhang Q., Zhang D., Lu Y.. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles[J]. Biosens. Bioelectron., 2016,77:963-970. doi: 10.1016/j.bios.2015.10.065
Chen Y., Dou X.W., Zhang M.M.. The fabrication of flower-like graphene/octadecylamine composites[J]. Chin. Chem. Lett., 2015,26:1144-1146. doi: 10.1016/j.cclet.2015.05.045
Mirabedini M., Motamedi E., Kassaee M.Z.. Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A3-coupling synthesis of propargylamines[J]. Chin. Chem. Lett., 2015,26:1085-1090. doi: 10.1016/j.cclet.2015.05.021
Y. Jang, H. Jeong, D. Kim, et al., Electrical characterization of benzenedithiolate molecular electronic devices with graphene electrodes on rigid and flexible substrates, Nanotechnology 27(2016) 145301.
Chen D., Feng H.B., Li J.H.. Graphene oxide:preparation, functionalization, and electrochemical applications[J]. Chem. Rev., 2012,112:6027-6053. doi: 10.1021/cr300115g
Zhang L.B., Yang S.R., Wang J.Q.. A facile preparation and electrochemical properties of nickel based compound-graphene sheet composites for supercapacitors[J]. Chin. Chem. Lett., 2015,26:522-528. doi: 10.1016/j.cclet.2015.01.025
Keeley G.P., McEvoy N., Nolan H.. Electroanalytical sensing properties of pristine and functionalized multilayer graphene[J]. Chem. Mater., 2014,26:1807-1812. doi: 10.1021/cm403501r
Yang W., Chen G., Shi Z.. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nat. Mater., 2013,12:792-797. doi: 10.1038/nmat3695
Wang Y., Lu J., Tang L.H.. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds[J]. Anal. Chem., 2009,81:9710-9715. doi: 10.1021/ac901935a
Sun J.J., Yang N.X., Sun Z.. Fully converting graphite into graphene oxide hydrogels by preoxidation with impure manganese dioxide[J]. ACS Appl. Mater. Inter., 2015,7:21356-21363. doi: 10.1021/acsami.5b06008
Xu M., Zhang W., Yang Z.. One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots[J]. Nanoscale, 2015,7:10527-10534. doi: 10.1039/C5NR02198G
Ciesielski A., Samorı P.. Graphene via sonication assisted liquid-phase exfoliation[J]. Chem. Soc. Rev., 2014,43:381-398. doi: 10.1039/C3CS60217F
Wu C., Tang Y., Wan C.. Enhanced-oxidation and highly-sensitive detection of acetaminophen, guanine and adenine using NMP-exfoliated graphene nanosheets-modified electrode[J]. Electrochim. Acta, 2015,166:285-292. doi: 10.1016/j.electacta.2015.03.088
Wu C., Cheng Q., Wu K.. Electrochemical functionalization of N-methyl-2-pyrrolidone-exfoliated graphene nanosheets as highly sensitive analytical platform for phenols[J]. Anal. Chem., 2015,87:3294-3299. doi: 10.1021/ac504309j
Yang X., Long J., Sun D.. Highly-sensitive electrochemical determination of rutin using NMP-exfoliated graphene nanosheets-modified electrode[J]. Electroanalysis, 2016,28:83-87. doi: 10.1002/elan.v28.1
Du W.C., Lu J., Sun P.P.. Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene[J]. Chem. Phys. Lett. 568-, 2013,569:198-201.
De S., King P.J., Lotya M.. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions[J]. Small, 2010,6:458-464. doi: 10.1002/smll.v6:3
Kudin K.N., Ozbas B., Schniepp H.C.. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Lett., 2008,8:36-41. doi: 10.1021/nl071822y
Allen M.J., Tung V.C., Kaner R.B.. Honeycomb carbon a review of graphene[J]. Chem. Rev., 2010,110:132-145. doi: 10.1021/cr900070d
Bermudez V.M.. Effect of humidity on the interaction of dimethyl methylphosphonate (DMMP) vapor with SiO2 and Al2O3 surfaces, studied using infrared attenuated total reflection spectroscopy[J]. Langmuir, 2010,26:18144-18154. doi: 10.1021/la103381r
Xu J., Zhang J., Liu X.. Hydrothermal synthesis of copper hydroxyphosphate hierarchical architectures[J]. Chem. Eng. Technol., 2012,35:2189-2194. doi: 10.1002/ceat.v35.12
N. Yan, F. Wang, H. Zhong, et al., Hollow porous SiO2 nanocubes towards highperformance anodes for lithium-ion batteries, Sci. Rep.-UK 3(2013) 1568.
Liu G.D., Lin Y.H.. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents[J]. Anal. Chem., 2005,77:5894-5901. doi: 10.1021/ac050791t
Li C., Wang Z., Zhan G.. Electrochemical investigation of methyl parathion at goldsodium dodecylbenzene sulfonate nanoparticles modified glassy carbon electrode[J]. Colloids Surf. B-Biointerfaces, 2011,82:40-45. doi: 10.1016/j.colsurfb.2010.08.011
Tan X.H., Zhang S.H., Song X.J.. A nanostructured poly(2-mercapto-4-amino-5-cyano-6-phenylpyrimidine) film for sensitive determination of methyl parathion[J]. Nanosci. Nanotechnol. Lett., 2014,6:333-338. doi: 10.1166/nnl.2014.1763
Zhao L., Zhao F., Zeng B.. Electrochemical determination of methyl parathion using a molecularly imprinted polymer-ionic liquid-graphene composite film coated electrode[J]. Sensor. Actuat. B-Chem., 2013,176:818-824. doi: 10.1016/j.snb.2012.10.003
Pan D., Ma S., Bo X.. Electrochemical behavior of methyl parathion and its sensitive determination at a glassy carbon electrode modified with ordered mesoporous carbon[J]. Microchim. Acta, 2011,173:215-221. doi: 10.1007/s00604-011-0551-1
Tan X., Li B., Liew K.Y.. Electrochemical fabrication of molecularly imprinted porous silicate film electrode for fast and selective response of methyl parathion[J]. Biosens. Bioelectron., 2010,26:868-871. doi: 10.1016/j.bios.2010.07.085
Liu Z.M., Jing Y.F., Wang Z.L.. Highly sensitive electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto graphene-Fe3O4 nanocomposite[J]. Sens. Lett., 2013,11:531-538. doi: 10.1166/sl.2013.2762
Zeng Y., Yu D., Yu Y.. Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes-poly (acrylamide) nanocomposite film modified electrode[J]. J. Hazard. Mater., 2012,217:315-322.
Jin H., Liu Y., Wei M.. Determination of organophosphorus pesticides based on BDD electrode modified with Au/chitosan fiber[J]. J. Chin. Chem. Soc., 2013,60:297-302. doi: 10.1002/jccs.v60.3
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Peng Zhou , Ziang Jiang , Yang Li , Peng Xiao , Feixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Xin Wang , Changzhao Chen , Qishen Wang , Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
Han Yan , Jingming Yao , Zhangran Ye , Qiaoquan Lin , Ziqi Zhang , Shulin Li , Dawei Song , Zhenyu Wang , Chuang Yu , Long Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568
Huanyan Liu , Jiajun Long , Hua Yu , Shichao Zhang , Wenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269