Preparation of a novel, efficient, and recyclable magnetic catalyst, γ-Fe2O3@HAp-Ag nanoparticles, and a solventand halogen-free protocol for the synthesis of coumarin derivatives
- Corresponding author: Rezayati Sobhan, sobhan.rezayati@yahoo.com
Citation:
Abbasi Zahra, Rezayati Sobhan, Bagheri Maryam, Hajinasiri Rahimeh. Preparation of a novel, efficient, and recyclable magnetic catalyst, γ-Fe2O3@HAp-Ag nanoparticles, and a solventand halogen-free protocol for the synthesis of coumarin derivatives[J]. Chinese Chemical Letters,
;2017, 28(1): 75-82.
doi:
10.1016/j.cclet.2016.06.022
Pankhurst Q.A., Connolly J., Jones S.K., Dobson J.. Applications of magnetic nanoparticles in biomedicine[J]. J. Phys. D. Appl. Phys., 2003,36:R167-R181. doi: 10.1088/0022-3727/36/13/201
Gupta A.K., Curtis A.S.G.. Surface modified superparamagnetic nanoparticles for drug delivery:interaction studies with human fibroblasts in culture[J]. J. Mater. Sci. Mater. Med., 2004,15:493-496. doi: 10.1023/B:JMSM.0000021126.32934.20
Neuberger T., Schöpf B., Hofmann H., Hofmann M., von Rechenberg B.. Superparamagnetic nanoparticles for biomedical applications:possibilities and limitations of a new drug delivery system[J]. J. Magn. Magn. Mater., 2005,293:483-496. doi: 10.1016/j.jmmm.2005.01.064
Wang D.S., He J.B., Rosenzweig N., Rosenzweig Z.. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation[J]. Nano Lett., 2004,4:409-413. doi: 10.1021/nl035010n
Xu C.J., Xu K.M., Gu H.W.. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles[J]. J. Am. Chem. Soc., 2004,126:9938-9939. doi: 10.1021/ja0464802
Perez J.M., Simeone F.J., Saeki Y., Josephson L., Weissleder R.. Viral-induced selfassembly of magnetic nanoparticles allows the detection of viral particles in biological media[J]. J. Am. Chem. Soc., 2003,125:10192-10193. doi: 10.1021/ja036409g
Graham D.L., Ferreira H.A., Freitas P.P.. Magnetoresistive-based biosensors and biochips[J]. Trends Biotechnol., 2004,22:455-462. doi: 10.1016/j.tibtech.2004.06.006
Hiergeist R., Andr W., Buske N.. Application of magnetite ferrofluids for hyperthermia[J]. J. Magn. Magn. Mater., 1999,201:420-422. doi: 10.1016/S0304-8853(99)00145-6
Jordan A., Scholz R., Wust P., Fähling H., Felix R.. Magnetic fluid hyperthermia (MFH):cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles[J]. J. Magn. Magn. Mater., 1999,201:413-419. doi: 10.1016/S0304-8853(99)00088-8
Kassaee M.Z., Masrouri H., Movahedi F.. Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water[J]. Appl. Catal. A Gen., 2011,395:28-33. doi: 10.1016/j.apcata.2011.01.018
Kiasat A.R., Nazari S.. Magnetic nanoparticles grafted with β-cyclodextrin-polyurethane polymer as a novel nanomagnetic polymer brush catalyst for nucleophilic substitution reactions of benzyl halides in water[J]. J. Mol. Catal. A:Chem., 2012,365:80-86. doi: 10.1016/j.molcata.2012.08.012
Haeri H.S., Rezayati S., Nezhad E.R., Darvishi H.. Fe2+ supported on hydroxyapatite-core-shell-γ-Fe2O3 nanoparticles:efficient and recyclable green catalyst for the synthesis of 14-aryl-14H-dibenzo[a, j]xanthene derivatives[J]. Res. Chem. Intermed., 2016,42:4773-4784. doi: 10.1007/s11164-015-2318-5
Rezayati S., Jafroudi M.T., Nezhad E.R., Hajinasiri R., Abbaspour S.. Imidazolefunctionalized magnetic Fe3O4 nanoparticles:an efficient, green, recyclable catalyst for one-pot Friedländer quinoline synthesis[J]. Res. Chem. Intermed., 2016,42:5887-5898. doi: 10.1007/s11164-015-2411-9
Ghorbani A., Choghamarani -, Ghasemi B., Safari Z., Azadi G.. Schiff base complex coated Fe3O4 nanoparticles:a highly reusable nanocatalyst for the selective oxidation of sulfides and oxidative coupling of thiols[J]. Catal. Commun., 2015,60:70-75. doi: 10.1016/j.catcom.2014.11.007
Taher A., Kim J.B., Jung J.Y., Ahn W.S., Jin M.J.. Highly active and magnetically recoverable Pd-NHC catalyst immobilized on Fe3O4 nanoparticle-ionic liquid matrix for Suzuki reaction in water[J]. Synlett, 2009,15:2477-2482.
Nazari S., Saadat Sh., Fard P.K.. Imidazole functionalized magnetic Fe3O4 nanoparticles as a novel heterogeneous and efficient catalyst for synthesis of dihydropyrimidinones by Biginelli reaction[J]. Monatsh. Chem Chem. Mon., 2013,144:1877-1882. doi: 10.1007/s00706-013-1085-5
Nezhad E.R., Abbasi Z., Sajjadifar S.. Fe2+ supported on hydroxyapatite-core-shell-γ-Fe2O3 nanoparticles:as a novel, efficient and magnetically-recoverable catalyst for the synthesis of dihydropyrimidinones derivatives[J]. Sci. Iran. C., 2015,22:903-910.
Jiang Y.Y., Guo C., Xia H.S.. Magnetic nanoparticles supported ionic liquids for lipase immobilization:enzyme activity in catalyzing esterification[J]. J. Mol. Catal. B:Enzym., 2009,58:103-109. doi: 10.1016/j.molcatb.2008.12.001
Sajjadifar S., Abbasi Z., Nezhad E.R.. Ni2+ supported on hydroxyapatite-coreshell γ-Fe2O3 nanoparticles:a novel, highly efficient and reusable Lewis acid catalyst for the regioselective azidolysis of epoxides in water[J]. J. Iran. Chem. Soc., 2014,11:335-340. doi: 10.1007/s13738-013-0304-7
Zhang Y., Xia C.G.. Magnetic hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous Knoevenagel condensation[J]. Appl. Catal. A:Gen., 2009,366:141-147. doi: 10.1016/j.apcata.2009.06.041
Abu R., Reziq -, Wang D.S., Post M., Alper H.. Platinum nanoparticles supported on ionic liquid-modified magnetic nanoparticles:selective hydrogenation catalysts[J]. Adv. Synth. Catal., 2007,349:2145-2150. doi: 10.1002/(ISSN)1615-4169
Safari J., Zarnegar Z.. Brønsted acidic ionic liquid based magnetic nanoparticles:a new promoter for the Biginelli synthesis of 3, 4-dihydropyrimidin-2(1H)-ones/thiones[J]. New J. Chem., 2014,38:358-365. doi: 10.1039/C3NJ01065A
Kooti M., Afshari M.. Phosphotungstic acid supported on magnetic nanoparticles as an efficient reusable catalyst for epoxidation of alkenes[J]. Mater. Res. Bull., 2012,47:3473-3478. doi: 10.1016/j.materresbull.2012.07.001
Zheng X.X., Luo S.Z., Zhang L., Cheng J.P.. Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions[J]. Green Chem., 2009,11:455-458. doi: 10.1039/b823123k
Zhang Q., Su H., Luo J., Wei Y.Y.. A magnetic nanoparticle supported dual acidic ionic liquid:a "quasi-homogeneous" catalyst for the one-pot synthesis of benzoxanthenes[J]. Green Chem., 2012,14:201-208. doi: 10.1039/C1GC16031A
Wang C.J., Hsieh Y.J., Chu C.Y., Lin Y.L., Tseng T.H.. Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin[J]. Cancer Lett., 2002,183:163-168. doi: 10.1016/S0304-3835(02)00031-9
Spino C., Dodier M., Sotheeswaran S.. Anti-HIV coumarins from calophyllum seed oil[J]. Bioorg. Med. Chem. Lett., 1998,8:3475-3487. doi: 10.1016/S0960-894X(98)00628-3
Fan G.J., Mar W., Park M.K.. A novel class of inhibitors for steroid 5areductase:synthesis and evaluation of umbelliferone derivatives[J]. Bioorg. Med. Chem. Lett., 2001,11:2361-2363. doi: 10.1016/S0960-894X(01)00429-2
Ghodke S., Chudasama U.. Solvent free synthesis of coumarins using environment friendly solid acid catalysts[J]. Appl. Catal. A, 2013,453:219-226. doi: 10.1016/j.apcata.2012.12.024
Izquierdo M.E.F., Granados J.Q., Mir M.V., Martinez M.C.L.. Comparison of methods for determining coumarins in distilled beverages[J]. Food. Chem., 2000,70:251-258. doi: 10.1016/S0308-8146(00)00071-6
Mokhtary M., Najafizadeh F.. Polyvinylpolypyrrolidone-bound boron trifluoride (PVPP-BF3); a mild and efficient catalyst for synthesis of 4-metyl coumarins via the Pechmann reaction[J]. C.R. Chim., 2012,15:530-532. doi: 10.1016/j.crci.2012.03.004
Ahmed A.I., El-Hakam S.A., Khder A.S., El W.S.A., Yazeed -. Nanostructure sulfated tin oxide as an efficient catalyst for the preparation of 7-hydroxy-4-methyl coumarin by Pechmann condensation reaction[J]. J. Mol. Catal. A Chem., 2013,366:99-108. doi: 10.1016/j.molcata.2012.09.012
Killard A.J., O'kennedy R., Bogan D.P.. Analysis of the glucuronidation of 7-hydroxycoumarin by HPLC[J]. J. Pharm. Biomed. Anal., 1996,14:1585-1590. doi: 10.1016/0731-7085(96)01801-8
Semple S.J., Nobbs S.F., Pyke S.M., Reynolds G.D., Flower R.L.P.. Antiviral flavonoid from Pterocaulon sphacelatum, an Australian Aboriginal medicine[J]. J. Ethnopharmacol., 1999,68:283-288. doi: 10.1016/S0378-8741(99)00050-1
Rajitha B., Kumar V.N., Someshwar P.. Dipyridine copper chloride catalyzed coumarin synthesis via Pechmann condensation under conventional heating and microwave irradiation[J]. Arkivoc., 2006,2006:23-27.
Patil A.D., Freyer A.J., Eggleston D.S.. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn[J]. J. Med. Chem., 1993,36:4131-4138. doi: 10.1021/jm00078a001
Woods L.L., Sapp J.. A new one-step synthesis of substituted coumarins[J]. J. Org. Chem., 1962,27:3703-3705. doi: 10.1021/jo01057a519
Robertson A., Sandrock W.F., Hendry C.B.. CCCXX.X.-Hydroxy-carbonyl compounds. Part V. The preparation of coumarins and 1:4-pyrones from phenol, pcresol, quinol, and α-naphthol[J]. J. Chem. Soc., 1931:2426-2432.
Bose D.S., Rudradas A.P., Babu M.H.. The indium (Ⅲ) chloride-catalyzed von Pechmann reaction:a simple and effective procedure for the synthesis of 4-substituted coumarins[J]. Tetrahedron Lett., 2002,43:9195-9197. doi: 10.1016/S0040-4039(02)02266-9
Kadnikov D.V., Larock R.C.. Synthesis of coumarins via palladium-catalyzed carbonylative annulation of internal alkynes by o-Iodophenols[J]. Org. Lett., 2000,2:3643-3646. doi: 10.1021/ol0065569
Alexander V.M., Bhat R.P., Samant S.D.. Bismuth (Ⅲ) nitrate pentahydrate-a mild and inexpensive reagent for synthesis of coumarins under mild conditions[J]. Tetrahedron Lett., 2005,46:6957-6959. doi: 10.1016/j.tetlet.2005.07.117
Samadizadeh M., Nouri S., Kiani Moghadam F.. Magnetic nanoparticles functionalized ethane sulfonic acid (MNESA):as an efficient catalyst in the synthesis of coumarin derivatives using Pechmann condensation under mild condition[J]. Res. Chem. Intermed., 2016,42:6089-6103. doi: 10.1007/s11164-016-2447-5
Zareyee D., Serehneh M.. Recyclable CMK-5 supported sulfonic acid as an environmentally benign catalyst for solvent-free one-pot construction of coumarin through Pechmann condensation[J]. J. Mol. Catal. A:Chem., 2014,391:88-91. doi: 10.1016/j.molcata.2014.04.013
Rodríguez-Domínguez J.C., Kirsch G.. Sulfated zirconia, a mild alternative to mineral acids in the synthesis of hydroxycoumarins[J]. Tetrahedron Lett., 2006,47:3279-3281. doi: 10.1016/j.tetlet.2006.03.030
DeGrote J., Tyndall S., Wong K.F., VanAlstine M., Parris -. Synthesis of 7-alkoxy-4-trifluoromethylcoumarins via the von Pechmann reaction catalyzed by molecular iodine[J]. Tetrahedron Lett., 2014,55:6715-6717. doi: 10.1016/j.tetlet.2014.10.025
Romanelli G.P., Bennardi D., Ruiz D.M.. A solvent-free synthesis of coumarins using a Wells-Dawson heteropolyacid as catalyst[J]. Tetrahedron Lett., 2004,45:8935-8939. doi: 10.1016/j.tetlet.2004.09.183
Sinhamahapatra A., Sutradhar N., Pahari S., Bajaj H.C., Panda A.B.. Mesoporous zirconium phosphate:an efficient catalyst for the synthesis of coumarin derivatives through Pechmann condensation reaction[J]. Appl. Catal. A, 2011,394:93-100. doi: 10.1016/j.apcata.2010.12.027
Rezayati S., Nezhad E.R., Hajinasiri R.. 1-(1-Alkylsulfonic)-3-methylimidazolium chloride as a reusable Brønsted acid catalyst for the regioselective azidolysis of epoxides under solvent-free conditions[J]. Chin. Chem. Lett., 2016,27:974-978. doi: 10.1016/j.cclet.2016.02.015
Donadel K., Felisberto M.D.V., Laranjeira M.C.M.. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique[J]. An. Acad. Bras. Ciênc., 2009,81:179-186. doi: 10.1590/S0001-37652009000200004
Rahmatpour A., Mohammadian S.. An environmentally friendly, chemoselective, and efficient protocol for the preparation of coumarin derivatives by Pechman condensation reaction using new and reusable heterogeneous Lewis acid catalyst polystyrene-supported GaCl3[J]. C.R. Chimie, 2013,16:271-278. doi: 10.1016/j.crci.2013.01.006
Karami B., Kiani M., Hoseini M.A.. In (OTf)3 as a powerful and recyclable catalyst for Pechmann condensation without solvent[J]. Chin. J. Catal., 2014,35:1206-1211. doi: 10.1016/S1872-2067(14)60090-5
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Xiaochun Liu , Gaoyan Chen , Xiaodong Yue , Chaoyue Wang , Xue-Xin Zhang , Xuecheng Ran , Yingxiao Zong , Junke Wang , Xicun Wang . A novel N-stable Co2P nano-catalyst for the synthesis of quinoxalines by annulation of alkynes and 1,2-diaminobenzenes. Chinese Chemical Letters, 2025, 36(8): 110707-. doi: 10.1016/j.cclet.2024.110707
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Yanyu Jin , Wenzhe Si , Xing Yuan , Hongjun Cheng , Bin Zhou , Li Cai , Yu Wang , Qibao Wang , Junhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260
Xu He , Wenjie Gao , Jinglei Xu , Zhanjun Cheng , Wenchao Peng , Beibei Yan , Guanyi Chen , Ning Li . Machine learning-assisted construction of C=O and pyridinic N active sites in sludge-based catalysts. Chinese Chemical Letters, 2025, 36(12): 111019-. doi: 10.1016/j.cclet.2025.111019
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Guanxiong Yu , Chengkai Xu , Huaqiang Ju , Jie Ren , Guangpeng Wu , Chengjian Zhang , Xinghong Zhang , Zhen Xu , Weipu Zhu , Hao-Cheng Yang , Haoke Zhang , Jianzhao Liu , Zhengwei Mao , Yang Zhu , Qiao Jin , Kefeng Ren , Ziliang Wu , Hanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
Xiaoyu Du , Huan Wang . Tailoring mass transfer on electrochemical fixation of air-abundant molecules. Chinese Chemical Letters, 2025, 36(8): 110276-. doi: 10.1016/j.cclet.2024.110276
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
Xiaoqiang Wang , Fangyuan Zhou , Yue Liu , Zhongbiao Wu . CePO4 supported Cr catalyst with superior sulfur tolerance for selective catalytic oxidation of ammonia. Chinese Chemical Letters, 2025, 36(7): 110420-. doi: 10.1016/j.cclet.2024.110420
Jiaming Li , Na Xu , Yafei Zhang , Hongjun Dong , Chunmei Li . Research progress of heterogeneous photocatalyst for H2O2 production: A mini review. Chinese Chemical Letters, 2025, 36(11): 110470-. doi: 10.1016/j.cclet.2024.110470
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003