Citation: Routaray Anita, Mantri Somanath, Nath Nibedita, Kumar Sutar Alekha, Maharana Tungabidya. Polymerization of lactide and synthesis of block copolymer catalyzed by copper (II) Schiff base complex[J]. Chinese Chemical Letters, ;2016, 27(12): 1763-1766. doi: 10.1016/j.cclet.2016.06.011 shu

Polymerization of lactide and synthesis of block copolymer catalyzed by copper (II) Schiff base complex

  • Corresponding author: Kumar Sutar Alekha, dralekhasutar@gmail.com Maharana Tungabidya, mtungabidya@gmail.com
  • Received Date: 18 April 2016
    Revised Date: 19 May 2016
    Accepted Date: 27 May 2016
    Available Online: 9 December 2016

Figures(6)

  • In the present investigation, the novel copper Schiff base complex was synthesized and its catalytic activity was evaluated for the ring-opening polymerization (ROP) of lactide and block polymerization of poly(lactide) with poly(ethylene glycol)methyl ether.
  • 加载中
    1. [1]

      A.K Sutar, T Maharana, S Dutta, C.T Chen, C.C Lin. Ring-opening polymerization by lithium catalysts:an overview[J]. Chem. Soc. Rev, 2010,39:1724-1746. doi: 10.1039/B912806A

    2. [2]

      J Wu, T.L Yu, C.T Chen, C.C Lin. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters[J]. Coord. Chem. Rev, 2006,250:602-626. doi: 10.1016/j.ccr.2005.07.010

    3. [3]

      T Maharana, B Mohanty, Y.S Negi. Melt-solid polycondensation of lactic acid and its biodegradability[J]. Prog. Polym. Sci, 2009,24:99-124.  

    4. [4]

      B Jeong, Y.H Bae, D.S Lee, S.W Kim. Biodegradable block copolymers as injectable drug-delivery systems[J]. Nature, 1997,388:860-862. doi: 10.1038/42218

    5. [5]

      R Gref, Y Minamitake, M.T Peracchia. Biodegradable long-circulating polymeric nanospheres[J]. Science, 1994,263:1600-1603. doi: 10.1126/science.8128245

    6. [6]

      A. Routaray, N. Nath, T. Maharana, A.K. Sutar, Ring-opening polymerization of lactide by aluminium catalyst, Catal. Sci. Technol. (2015), http://dx.doi.org/10.1039/C5CY00454C.

    7. [7]

      Y Gao, Z Dai, J Zhang. Trinuclear and tetranuclear magnesium alkoxide clusters as highly active initiators for ring-opening[J]. Inorg. Chem, 2014,53:716-726. doi: 10.1021/ic401459a

    8. [8]

      J Wojtaszak, K Mierzwicki, S Szafert, N Gulia, J Ejfler. Homoleptic aminophenolates of Zn, Mg and Ca. Synthesis, structure, DFT studies and polymerization activity in ROP of lactides[J]. Dalton Trans, 2014,43:2424-2436. doi: 10.1039/C3DT52868E

    9. [9]

      C.T Chen, C.C Hung, Y.J Chang, K.F Peng, M.T Chen. Magnesium and zinc complexes containing pendantpyrazolylephenolate ligands as catalysts for ring opening polymerization of cyclic esters[J]. J. Organomet. Chem, 2013,73:81-89.

    10. [10]

      A.B Bnesser, B Li, J.A Byers. Redox-controlled polymerization of lactide catalyzed by bis (imino) pyridine iron bis (alkoxide) complexes[J]. J. Am. Chem. Soc, 2013,135:16553-16560. doi: 10.1021/ja407920d

    11. [11]

      E.J Lee, K.M Lee, J Jang. Characteristics of silica-supported tin(Ⅱ) methoxide catalysts for ring-opening polymerization (ROP) of L-lactide[J]. J. Mol. Catal. A:Chem, 2014,385:68-72. doi: 10.1016/j.molcata.2014.01.008

    12. [12]

      H.Y Chen, M.Y Liu, A.K Sutar, C.C Lin. Synthesis and structural studies of heterobimetallic alkoxide complexes supported by bis(phenolate) ligands:efficient atalysts for ring-opening polymerization of L-lactide[J]. Inorg. Chem, 2010,49:665-674. doi: 10.1021/ic901938e

    13. [13]

      H.Y Chen, Y.L Peng, T.H Huang. Comparative study of lactide polymerization by zinc alkoxide complexes with a beta-diketiminato ligand bearing different substituents[J]. J. Mol. Catal. A:Chem, 2011,339:61-71. doi: 10.1016/j.molcata.2011.02.013

    14. [14]

      C Fliedel, D Vila-Viçosa, M.J Calhorda, S Dagorne, T Aviles. Dinuclear zinc-Nheterocyclic carbene complexes for either the controlled ring-opening polymerization of lactide or the controlled degradation of polylactide under mild conditions[J]. Chem. Catal. Chem, 2014,6:1357-1367.

    15. [15]

      D Appavoo, B Omondi, I.A Guzei. Bis(3,5-dimethylpyrazole) copper(Ⅱ) and zinc(Ⅱ) complexes as efficient initiators for the ring opening polymerization of ecaprolactone and D L-lactide[J]. Polyhedron, 2014,69:55-60. doi: 10.1016/j.poly.2013.11.011

    16. [16]

      A John, V Katiyar, K Pang. Ni(Ⅱ) and Cu(Ⅱ) complexes of phenoxy-ketimine ligands:Synthesis, structures and their utility in bulk ring-opening polymerization (ROP) of L-lactide[J]. Polyhedron, 2007,26:4033-4044. doi: 10.1016/j.poly.2007.04.039

    17. [17]

      S Bhunora, J Mugo, A Bhaw-Luximon. The use of Cu and Zn salicylaldimine complexes as catalyst precursors in ring opening polymerization of lactides:ligand effects on polymer characteristics[J]. Appl. Organomet. Chem, 2011,25:133-145. doi: 10.1002/aoc.v25.2

    18. [18]

      T.J.J Whitehorne, F Schaper. Square-planar Cu (Ⅱ) diketiminate complexes in lactide polymerization[J]. Inorg. Chem, 2013,52:13612-13622. doi: 10.1021/ic402133c

    19. [19]

      R.R Gowda, D Chakraborty. Copper acetate catalyzed bulk ring opening polymerization of lactides[J]. J. Mol. Catal. A:Chem, 2011,349:86-93. doi: 10.1016/j.molcata.2011.08.024

    20. [20]

      K.C Gupta, A.K Sutar. Catalytic activities of Schiff base transition metal complexes[J]. Coord. Chem. Rev, 2008,252:1420-1450. doi: 10.1016/j.ccr.2007.09.005

    21. [21]

      A.K Sutar, Y Das, S Pattnaik. Novel polystyrene-anchored zinc complex:efficient catalyst for phenol oxidation[J]. China J. Catal, 2014,35:1701-1708. doi: 10.1016/S1872-2067(14)60113-3

    22. [22]

      H Alamri, J Zhao, D Pahovnik, N Hadjichristidis. Phosphazene-catalyzed ringopening polymerization of e-caprolactone:influence of solvents and initiators[J]. Polym. Chem, 2014,55:471-5478. doi: 10.1016/j.polymer.2013.12.022

    23. [23]

      M.L Hsueh, B.H Huang, J Wu, C.C Lin. Synthesis, characterization, and catalytic studies of lithium complexes:efficient initiators for ring-opening polymerization of l-lactide[J]. Macromolecules, 2005,38:9482-9487. doi: 10.1021/ma050600o

    24. [24]

      Z Zhang, S.S Feng. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy:synthesis, formulation, characterization and in vitro drug release[J]. Biomaterials, 2006,27:262-270. doi: 10.1016/j.biomaterials.2005.05.104

    25. [25]

      K Jamshidi, S Hyon, Y Ikada. Thermal characterization of polylactides[J]. Polymer, 1988,29:2229-2234. doi: 10.1016/0032-3861(88)90116-4

  • 加载中
    1. [1]

      Yiyang ZhangGuangshu YuanXiangkun MengXu ZhangLei Yu . Promoting the catalytic activities of polyanilines for L-lactic acid condensation by calcium-doping: A biocompatible strategy. Chinese Chemical Letters, 2025, 36(12): 111069-. doi: 10.1016/j.cclet.2025.111069

    2. [2]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    3. [3]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    4. [4]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    5. [5]

      Yingyue ZHANGLiuqing KANGYating YANGXiaofen GUANWenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Lei ZhangChenyang KouKun NiYiwen ChenTongchuan ZhangBaoliang Zhang . Microenvironment regulation of copper sites by chelating hydrophobic polymer for electrosynthesis of ethylene. Chinese Chemical Letters, 2025, 36(6): 110836-. doi: 10.1016/j.cclet.2025.110836

    8. [8]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    9. [9]

      Hongping ZhaoWeiming Yuan . Merging catalytic electron donor-acceptor complex and copper catalysis: Enantioselective radical carbocyanation of alkenes. Chinese Chemical Letters, 2025, 36(10): 110894-. doi: 10.1016/j.cclet.2025.110894

    10. [10]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    11. [11]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    12. [12]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    13. [13]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    14. [14]

      Ke WuXiuqin RuanShuolei JiaEnyuan WangQingfa Zhou . DABCO-catalyzed [3+4] annulations of Schiff bases with α-substituted allenes: Construction of functionalized benzazepine derivatives. Chinese Chemical Letters, 2025, 36(7): 110646-. doi: 10.1016/j.cclet.2024.110646

    15. [15]

      Peng Liu . Cyclodextrins as versatile supramolecular building block in nanoscale drug delivery systems for precise tumor chemotherapy. Chinese Chemical Letters, 2025, 36(11): 111406-. doi: 10.1016/j.cclet.2025.111406

    16. [16]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

    17. [17]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    18. [18]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    19. [19]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    20. [20]

      Ruofan QiJing ZhangWang SunBai YuZhenhua WangKening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009

Metrics
  • PDF Downloads(1)
  • Abstract views(1436)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return