Citation: Cui Peng, Jing Xiao-Fei, Yuan Ye, Zhu Guang-Shan. Synthesis of porous aromatic framework with Friedel-Crafts alkylation reaction for CO2 separation[J]. Chinese Chemical Letters, ;2016, 27(9): 1479-1484. doi: 10.1016/j.cclet.2016.03.038 shu

Synthesis of porous aromatic framework with Friedel-Crafts alkylation reaction for CO2 separation

  • Corresponding author: Jing Xiao-Fei, jingxf100@nenu.edu.cn Zhu Guang-Shan, zhugs@jlu.edu.cn
  • Received Date: 4 March 2016
    Revised Date: 18 March 2016
    Accepted Date: 23 March 2016
    Available Online: 5 September 2016

Figures(8)

  • A novel porous aromatic framework, PAF-8, derived from tetraphenylsilane as basic building unit, was successfully synthesized via Friedel-Crafts alkylation reaction. This PAF material had high thermal stability as well as high surface area (785 m2 g-1) calculated from the Brunauer-Emmett-Teller (BET) model. Meanwhile, PAF-8 possessed high performances in gas sorption and especially for CO2 separation. 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
  • 加载中
    1. [1]

      Dawson R., Cooper A.I., Adams D.J.. Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers[J]. Polym. Int., 2013,62:345-352.  

    2. [2]

      Jiang J.X., Cooper A.I.. Microporous organic polymers:design, synthesis, and function[J]. Top. Curr. Chem., 2010,293:1-33.  

    3. [3]

      Zhu X.L., Wang P.Y., Peng C., Yang J., Yan X.B.. Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents[J]. Chin. Chem. Lett., 2014,25:929-932. doi: 10.1016/j.cclet.2014.03.039

    4. [4]

      Budd P.M.. Putting order into polymer networks[J]. Science, 2007,316:210-211. doi: 10.1126/science.1141929

    5. [5]

      Carta M., Croad M., Malpass-Evans R.. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers[J]. Adv. Mater., 2014,26:3526-3531. doi: 10.1002/adma.v26.21

    6. [6]

      Ding X.S., Han B.H.. Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation[J]. Angew. Chem. Int. Ed., 2015,54:6536-6539. doi: 10.1002/anie.201501732

    7. [7]

      Du R., Zhang N., Xu H.. CMP aerogels:ultrahigh-surface-area carbon-based monolithic materials with superb sorption performance[J]. Adv. Mater., 2014,26:8053-8058. doi: 10.1002/adma.v26.47

    8. [8]

      Zhang J.S., Qiao Z.A., Mahurin S.M.. Hypercrosslinked phenolic polymers with well-developed mesoporous frameworks[J]. Angew. Chem. Int. Ed., 2015,54:4582-4586. doi: 10.1002/anie.201500305

    9. [9]

      Hao L., Zhang S.S., Liu R.J.. Bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reduction reaction[J]. Adv. Mater., 2015,27:3190-3195. doi: 10.1002/adma.201500863

    10. [10]

      Zhu X., Tian C.C., Mahurin S.M.. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation[J]. J. Am. Chem. Soc., 2012,134:10478-10484. doi: 10.1021/ja304879c

    11. [11]

      Ben T., Ren H., Ma S.Q.. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angew. Chem. Int. Ed., 2009,48:9457-9460. doi: 10.1002/anie.200904637

    12. [12]

      Wang W., Yuan Y., Sun F.X., Zhu G.S.. Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2[J]. Chin. Chem. Lett., 2014,25:1407-1410. doi: 10.1016/j.cclet.2014.08.002

    13. [13]

      Yuan Y., Sun F.X., Li L.N., Cui P., Zhu G.S.. Porous aromatic frameworks with aniontemplated pore apertures serving as polymeric sieves[J]. Nat. Commun., 2014,54260.  

    14. [14]

      Feng X., Ding X.S., Jiang D.L.. Covalent organic frameworks[J]. Chem. Soc. Rev., 2012,41:6010-6022. doi: 10.1039/c2cs35157a

    15. [15]

      Kiskan B., Antonietti M., Weber J.. Teaching new tricks to an old indicator:pHswitchable, photoactive microporous polymer networks from phenolphthalein with tunable CO2 adsorption power[J]. Macromolecules, 2012,45:1356-1361. doi: 10.1021/ma202675v

    16. [16]

      Han S.S., Mendoza-Cortés J.L., Goddard Ⅲ W.A.. Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks[J]. Chem. Soc. Rev., 2009,38:1460-1476. doi: 10.1039/b802430h

    17. [17]

      Li J.R., Sculley J., Zhou H.C.. Metal-organic frameworks for separations[J]. Chem. Rev., 2012,112:869-932. doi: 10.1021/cr200190s

    18. [18]

      Filer A., Choi H.J., Seo J.M., Baek J.B.. Two and three dimensional network polymers for electrocatalysis[J]. Phys. Chem. Chem. Phys., 2014,16:11150-11161. doi: 10.1039/c4cp01246a

    19. [19]

      Zhang Y.G., Riduan S.N.. Functional porous organic polymers for heterogeneous catalysis[J]. Chem. Soc. Rev., 2012,41:2083-2094. doi: 10.1039/C1CS15227K

    20. [20]

      Xiang Z.H., Cao D.P.. Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules[J]. Macromol. Rapid Commun., 2012,33:1184-1190. doi: 10.1002/marc.201100865

    21. [21]

      Feng X., Chen L., Honsho Y.. An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering[J]. Adv. Mater., 2012,24:3026-3031. doi: 10.1002/adma.v24.22

    22. [22]

      Yuan R.R., Ren H., Yan Z.J., Wang A.F., Zhu G.S.. Robust tri(4-ethynylphenyl)aminebased porous aromatic frameworks for carbon dioxide capture[J]. Polym. Chem., 2014,5:2266-2272. doi: 10.1039/c3py01252b

    23. [23]

      Weber J., Thomas A.. Toward stable interfaces in conjugated polymers:microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block[J]. J. Am. Chem. Soc., 2008,130:6334-6335. doi: 10.1021/ja801691x

    24. [24]

      Schmidt J., Werner M., Thomas A.. Conjugated microporous polymer networks via Yamamoto polymerization[J]. Macromolecules, 2009,42:4426-4429. doi: 10.1021/ma9005473

    25. [25]

      Luo Y.L., Li B.Y., Wang W., Wu K.B., Tan B.. Hypercrosslinked aromatic heterocyclic microporous polymers:a new class of highly selective CO2 capturing materials[J]. Adv. Mater., 2012,24:5703-5707. doi: 10.1002/adma.v24.42

    26. [26]

      Dawson R., Stevens L.A., Drage T.C.. Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents[J]. J. Am. Chem. Soc., 2012,134:10741-10744. doi: 10.1021/ja301926h

    27. [27]

      Li B.Y., Gong R.N., Wang W.. A new strategy to microporous polymers:knitting rigid aromatic building blocks by external cross-linker[J]. Macromolecules, 2011,44:2410-2414. doi: 10.1021/ma200630s

    28. [28]

      Liu G.L., Wang Y.X., Shen C.J., Ju Z.F., Yuan D.Q.. A facile synthesis of microporous organic polymers for efficient gas storage and separation[J]. J. Mater. Chem. A, 2015,3:3051-3058. doi: 10.1039/C4TA05349D

    29. [29]

      Zhang Y.H., Li Y.D., Wang F.. Hypercrosslinked microporous organic polymer networks derived from silole-containing building blocks[J]. Polymer, 2014,55:5746-5750. doi: 10.1016/j.polymer.2014.09.014

    30. [30]

      Yao S.W., Yang X., Yu M., Zhang Y.H., Jiang J.X.. High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO2 capture[J]. J. Mater. Chem. A, 2014,2:8054-8059. doi: 10.1039/c4ta00375f

    31. [31]

      Yang W.Y., Wang D.X., Li L.G., Liu H.Z.. Construction of hybrid porous materials from cubic octavinylsilsesquioxane through Friedel-Crafts reaction using tetraphenylsilane as a concentrative crosslinker[J]. Eur. J. Inorg. Chem., 2014,2014:2976-2982. doi: 10.1002/ejic.v2014.18

    32. [32]

      Bildirir H., Osken I., Ozturk T., Thomas A.. Reversible doping of a dithienothiophene-based conjugated microporous polymer[J]. Chem. Eur. J., 2015,21:9306-9311. doi: 10.1002/chem.v21.26

    33. [33]

      Li H.Y., Meng B., Mahurin S.M.. Carbohydrate based hyper-crosslinked organic polymers with -OH functional groups for CO2 separation[J]. J. Mater. Chem. A, 2015,3:20913-20918. doi: 10.1039/C5TA03213J

    34. [34]

      Muller T., Bräse S.. Tetrahedral organic molecules as components in supramolecular architectures and in covalent assemblies, networks and polymers[J]. RSC Adv., 2014,4:6886-6907. doi: 10.1039/c3ra46951d

    35. [35]

      Jing X.F., Zou D.L., Cui P., Ren H., Zhu G.S.. Facile synthesis of cost-effective porous aromatic materials with enhanced carbon dioxide uptake[J]. J. Mater. Chem. A, 2013,1:13926-13931. doi: 10.1039/c3ta13115g

    36. [36]

      Errahali M., Gatti G., Tei L.. Microporous hyper-cross-linked aromatic polymers designed for methane and carbon dioxide adsorption[J]. J. Phys. Chem. C, 2014,118:28699-28710. doi: 10.1021/jp5096695

    37. [37]

      Martín C.F., Stöckel E., Clowes R.. Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture[J]. J. Mater. Chem., 2011,21:5475-5483. doi: 10.1039/c0jm03534c

    38. [38]

      Koyuncu S., Gultekin B., Zafer C.. Electrochemical and optical properties of biphenyl bridged-dicarbazole oligomer films:electropolymerization and electrochromism[J]. Electrochim. Acta, 2009,54:5694-5702. doi: 10.1016/j.electacta.2009.05.014

    39. [39]

      Rabbani M.G., El-Kaderi H.M.. Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage[J]. Chem. Mater., 2011,23:1650-1653. doi: 10.1021/cm200411p

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    3. [3]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    4. [4]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    5. [5]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    6. [6]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    7. [7]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    8. [8]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    9. [9]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    10. [10]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    11. [11]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    12. [12]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    13. [13]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    14. [14]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    15. [15]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    16. [16]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    17. [17]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    18. [18]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    19. [19]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    20. [20]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

Metrics
  • PDF Downloads(2)
  • Abstract views(736)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return