Citation: Hai-Feng Li, Zhang Qin-Sheng, Pang Zeng-Bo, Tian Mi, Gao Ping, Wang Lai-Lai. Pd/TiN nanocomposite catalysts for selective hydrogenation of phenol and its derivatives[J]. Chinese Chemical Letters, ;2016, 27(9): 1500-1504. doi: 10.1016/j.cclet.2016.03.036 shu

Pd/TiN nanocomposite catalysts for selective hydrogenation of phenol and its derivatives

  • Corresponding author: Gao Ping, gaoping@licp.cas.cn Wang Lai-Lai, wll@licp.cas.cn
  • Received Date: 3 February 2016
    Revised Date: 9 March 2016
    Accepted Date: 15 March 2016
    Available Online: 1 September 2016

Figures(4)

  • Pd/TiN nanocomposite catalysts were fabricated for one-step selective hydrogenation of phenol to cyclohexanone successfully. High conversion of phenol (99%) and selectivity of cyclohexanone (98%) were obtained at 30℃ and 0.2 MPa H2 for 12 h in the mixed solvents of H2O and CH2Cl2. The Pd nanoparticles were stable in the reaction, and no aggregation was detected after four successive runs. The catalytic activity and selectivity depended on slightly the Pd particle sizes. The generality of the catalysts for this reaction was demonstrated by the selective hydrogenation of phenol derivatives, which showed that the catalyst was selective for the formation of cyclohexanone.
  • 加载中
    1. [1]

      Kuklin S., Maximov A., Zolotukhina A., Karakhanov E.. New approach for highly selective hydrogenation of phenol to cyclohexanone:combination of rhodium nanoparticles and cyclodextrins[J]. Catal. Commun., 2016,73:63-68. doi: 10.1016/j.catcom.2015.10.005

    2. [2]

      Jiang H., Qu Z.Y., Li Y.. One-step semi-continuous cyclohexanone production via hydrogenation of phenol in a submerged ceramic membrane reactor[J]. Chem. Eng. J., 2016,284:724-732. doi: 10.1016/j.cej.2015.09.037

    3. [3]

      Chen J.Z., Zhang W., Chen L.M.. Direct selective hydrogenation of phenol and derivatives over polyaniline-functionalized carbon-nanotube-supported palladium[J]. Chempluschem, 2013,78:142-148. doi: 10.1002/cplu.v78.2

    4. [4]

      Shore S.G., Ding E., Park C., Keane M.A.. The application of {(DMF)(10)Yb-2[TM(CN)(4)](3)}(infinity) (TM=Ni Pd) supported on silica to promote gas phase phenol hydrogenation[J]. J. Mol. Catal. A:Chem., 2004,212:291-300. doi: 10.1016/j.molcata.2003.11.004

    5. [5]

      Wang Y., Zhang J.S., Wang X.C., Antonietti M., Li H.R.. Boron-and fluorinecontaining mesoporous carbon nitride polymers:metal-free catalysts for cyclohexane oxidation[J]. Angew. Chem. Int. Ed., 2010,49:3356-3359. doi: 10.1002/anie.201000120

    6. [6]

      Nelson N.C., Manzano J.S., Sadow A.D., Overbury S.H., Sowing I.I.. Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure[J]. ACS Catal., 2015,5:2051-2061. doi: 10.1021/cs502000j

    7. [7]

      Fridman V.Z., Davydov A.A.. Dehydrogenation of cyclohexanol on copper-containing catalysts I. The influence of the oxidation state of copper on the activity of copper sites[J]. J. Catal., 2000,195:20-30. doi: 10.1006/jcat.2000.2979

    8. [8]

      Zhang F.W., Chen S., Li H., Zhang X.M., Yang H.Q.. Pd nanoparticles embedded in the outershell of a mesoporous core-shell catalyst for phenol hydrogenation in pure water[J]. RSC Adv., 2015,5:102811-102817. doi: 10.1039/C5RA12947H

    9. [9]

      Chatterjee M., Kawanami H., Sato M.. Hydrogenation of phenol in supercritical carbon dioxide catalyzed by palladium supported on Al-MCM-41:a facile route for one-pot cyclohexanone formation[J]. Adv. Synth. Catal., 2009,351:1912-1924. doi: 10.1002/adsc.v351:11/12

    10. [10]

      Ertas I.E., Gulcan M., Bulut A., Yurderi M., Zahmakiran M.. Rhodium nanoparticles stabilized by sulfonic acid functionalized metal-organic framework for the selective hydrogenation of phenol to cyclohexanone[J]. J. Mol. Catal. A:Chem., 2015,410:209-220. doi: 10.1016/j.molcata.2015.09.025

    11. [11]

      Shore S.G., Ding E.R., Park C., Keane M.A.. Vapor phase hydrogenation of phenol over silica supported Pd and Pd-Yb catalysts[J]. Catal. Commun., 2002,3:77-84. doi: 10.1016/S1566-7367(02)00052-3

    12. [12]

      Xiang Y.Z., Kong L.N., Lu C.S., Ma L., Li X.N.. Lanthanum-promoted Pd/Al2O3 catalysts for liquid phase in situ hydrogenation of phenol to cyclohexanone[J]. React. Kinet. Mech. Cat., 2010,100:227-235.  

    13. [13]

      Scire S., Minico S., Crisafulli C.. Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts:an investigation on the influence of different supports and Pd precursors[J]. Appl. Catal. A:Gen., 2002,235:21-31. doi: 10.1016/S0926-860X(02)00237-5

    14. [14]

      Chen Y.Z., Liaw C.W., Lee L.I.. Selective hydrogenation of phenol to cyclohexanone over palladium supported on calcined Mg/Al hydrotalcite[J]. Appl. Catal. A:Gen., 1999,177:1-8. doi: 10.1016/S0926-860X(98)00252-X

    15. [15]

      Neri G., Visco A.M., Donato A.. Hydrogenation of phenol to cyclohexanone over palladium and alkali-doped palladium catalysts[J]. Appl. Catal. A:Gen., 1994,110:49-59. doi: 10.1016/0926-860X(94)80104-5

    16. [16]

      Wang Y., Yao J., Li H.R., Su D.S., Antonietti M.. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media[J]. J. Am. Chem. Soc., 2011,133:2362-2365. doi: 10.1021/ja109856y

    17. [17]

      Liu H.Z., Jiang T., Han B.X., Liang S.G., Zhou Y.X.. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-lewis acid catalyst[J]. Science, 2009,326:1250-1252. doi: 10.1126/science.1179713

    18. [18]

      Rode C.V., Joshi U.D., Sato O., Shirai M.. Catalytic ring hydrogenation of phenol under supercritical carbon dioxide[J]. Chem. Commun., 2003:1960-1961.  

    19. [19]

      Liu H., Jiang T., Han B., Liang S., Zhou Y.. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst[J]. Science, 2009,326:1250-1252. doi: 10.1126/science.1179713

    20. [20]

      Wang Y., Yao J., Li H., Su D., Antonietti M.. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media[J]. J. Am. Chem. Soc., 2011,133:2362-2365. doi: 10.1021/ja109856y

    21. [21]

      Esposito D.V., Hunt S.T., Kimmel Y.C., Chen J.G.G.. A new class of electrocatalysts for hydrogen production from water electrolysis:metal monolayers supported on low-cost transition metal carbides[J]. J. Am. Chem. Soc., 2012,134:3025-3033. doi: 10.1021/ja208656v

    22. [22]

      Li X.H., Antonietti M.. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides:functional Mott-Schottky heterojunctions for catalysis[J]. Chem. Soc. Rev., 2013,42:6593-6604. doi: 10.1039/c3cs60067j

    23. [23]

      Hammerle H., Kobuch K., Kohler K.. Biostability of micro-photodiode arrays for subretinal implantation[J]. Biomaterials, 2002,23:797-804. doi: 10.1016/S0142-9612(01)00185-5

    24. [24]

      Marlo M., Milman V.. Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals[J]. Phys. Rev. B, 2000,62:2899-2907. doi: 10.1103/PhysRevB.62.2899

    25. [25]

      Molinari V., Giordano C., Antonietti M., Esposito D.. Titanium nitride-nickel nanocomposite as heterogeneous catalyst for the hydrogenolysis of aryl ethers[J]. J. Am. Chem. Soc., 2014,136:1758-1761. doi: 10.1021/ja4119412

    26. [26]

      Zhu J.F., Tao G.H., Liu H.Y.. Aqueous-phase selective hydrogenation of phenol to cyclohexanone over soluble Pd nanoparticles[J]. Green Chem., 2014,16:2664-2669. doi: 10.1039/c3gc42408a

    27. [27]

      Shuai D., McCalman D.C., Choe J.K.. Structure sensitivity study of waterborne contaminant hydrogenation using shape-and size-controlled Pd nanoparticles[J]. ACS Catal., 2013,3:453-463. doi: 10.1021/cs300616d

    28. [28]

      Crespo-Quesada M., Yarulin A., Jin M., Xia Y., Kiwi-Minsker L.. Structure sensitivity of alkynol hydrogenation on shape-and size-controlled palladium nanocrystals:which sites are most active and selective?[J]. J. Am. Chem. Soc., 2011,133:12787-12794. doi: 10.1021/ja204557m

    29. [29]

      Chen A., Zhao G., Chen J., Chen L., Yu Y.. Selective hydrogenation of phenol and derivatives over an ionic liquid-like copolymer stabilized palladium catalyst in aqueous media[J]. RSC Adv., 2013,3:4171-4175. doi: 10.1039/c3ra21663b

  • 加载中
    1. [1]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    2. [2]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    5. [5]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    6. [6]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    7. [7]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    8. [8]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    9. [9]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    10. [10]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    11. [11]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    12. [12]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    13. [13]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    14. [14]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    15. [15]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    16. [16]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    17. [17]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    18. [18]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    19. [19]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    20. [20]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

Metrics
  • PDF Downloads(1)
  • Abstract views(662)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return