Citation: Maturavongsadit Panita, Bi Xiangdong, Gado TogorA., Nie Yu-Zhe, Qian Wang. Adhesive peptides conjugated PAMAM dendrimer as a coating polymeric material enhancing cell responses[J]. Chinese Chemical Letters, ;2016, 27(9): 1473-1478. doi: 10.1016/j.cclet.2016.03.012 shu

Adhesive peptides conjugated PAMAM dendrimer as a coating polymeric material enhancing cell responses

  • Corresponding author: Qian Wang, wang263@mailbox.sc.edu
  • Received Date: 13 February 2016
    Revised Date: 29 February 2016
    Accepted Date: 4 March 2016
    Available Online: 5 September 2016

Figures(4)

  • This present work aims to functionalize poly(amidoamine) (PAMAM) dendrimers with various reported adhesive peptides, including Arg-Gly-Asp (RGD), Tyr-Ile-Gly-Ser-Arg (YIGSR), and Ile-Lys-Val-Ala-Val (IKVAV) for enhancing cell responses. The RGD, YIGSR, or IKVAV functionalized PAMAM coated substrate could promote cell adhesion of bone marrow mesenchymal stem cells (BMSCs) within 1 h after incubation. The neurite differentiation and proliferation of pheochromocytoma (PC12) cells were also significantly enhanced after culturing on the peptide functionalized PAMAM dendrimers for two and four days. This peptide functionalized PAMAM dendrimers are considered as the potential candidates for various tissue engineering applications.
  • 加载中
    1. [1]

      Tomalia D.A., Naylor A.M., Goddard W.A.. Starburst dendrimers:molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter[J]. Angew. Chem. Int. Ed., 1990,29:138-175. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Huang B.H., Otis J., Joice M., Kotlyar A., Thomas T.P.. PSMA-targeted stably linked "Dendrimer-Glutamate Urea-Methotrexate" as a prostate cancer therapeutic[J]. Biomacromolecules, 2014,15:915-923. doi: 10.1021/bm401777w

    3. [3]

      Peng J.Q., Qi X.L., Chen Y.. Octreotide-conjugated PAMAM for targeted delivery to somatostatin receptors over-expressed tumor cells[J]. J. Drug Target, 2014,22:428-438. doi: 10.3109/1061186X.2013.879386

    4. [4]

      Dib N., Fernández L., Gonzalez M.. Evaluation of different PAMAM dendrimers as molecular vehicle of 1, 2, 4-triazine N-oxide derivative with potential antitumor activity[J]. J. Inclusion Phenom. Macrocyclic Chem., 2014,79:65-73. doi: 10.1007/s10847-013-0324-z

    5. [5]

      Prieto M.J., Del Rio Zabala N.E., Marotta C.H.. Optimization and in vivo toxicity evaluation of G4.5 pamam dendrimer-risperidone complexes[J]. PLoS ONE, 2014,9e90393. doi: 10.1371/journal.pone.0090393

    6. [6]

      Kim T.H., Seo H.W., Han J., Ko K.S., Choi J.S.. Polyethylenimine-grafted polyamidoamine conjugates for gene delivery with high efficiency and low cytotoxicity[J]. Macromol. Res., 2014,22:757-764. doi: 10.1007/s13233-014-2108-8

    7. [7]

      Liu X.X., Liu C., Catapano C.V.. Structurally flexible triethanolamine-core poly(amidoamine) dendrimers as effective nanovectors to deliver RNAi-based therapeutics[J]. Biotechnol. Adv., 2014,32:844-852. doi: 10.1016/j.biotechadv.2013.08.001

    8. [8]

      Liu H., Zhu J.Y., Zhao J.L., Zhang G.X., Shi X.Y.. Targeted dendrimer-stabilized gold nanoparticles for computed tomography imaging of cancer cells[J]. J. Controlled Release, 2013,172:e37-e38.  

    9. [9]

      Liu J.F., Liu J.J., Chu L.P.. Synthesis, biodistribution, and imaging of PEGylatedacetylated polyamidoamine dendrimers[J]. J. Nanosci. Nanotechnol., 2014,14:3305-3312. doi: 10.1166/jnn.2014.7995

    10. [10]

      Jiang L.Y., Lv B., Luo Y.. The effects of an RGD-PAMAM dendrimer conjugate in 3D spheroid culture on cell proliferation, expression and aggregation[J]. Biomaterials, 2013,34:2665-2673. doi: 10.1016/j.biomaterials.2013.01.003

    11. [11]

      Iwamoto Y., Robey F.A., Graf J.. YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation[J]. Science, 1987,238:1132-1134. doi: 10.1126/science.2961059

    12. [12]

      Wu Y.C., Zhang Q.X., Du J.Y.. Self-assembled IKVAV peptide nanofibers promote adherence of PC12 cells[J]. J. Huazhong Univ. Sci. Technol., 2006,26:594-596. doi: 10.1007/s11596-006-0530-7

    13. [13]

      Sekiya I., Vuoristo J.T., Larson B.L., Prockop D.J.. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis[J]. Proc. Natl. Acad. Sci. U.S.A., 2002,99:4397-4402. doi: 10.1073/pnas.052716199

    14. [14]

      Mackay A.M., Beck S.C., Murphy J.M.. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow[J]. Tissue Eng., 1998,4:415-428. doi: 10.1089/ten.1998.4.415

    15. [15]

      Boeuf S., Richter W.. Chondrogenesis of mesenchymal stem cells:role of tissue source and inducing factors[J]. Stem Cell Res. Ther., 2010,131. doi: 10.1186/scrt31

    16. [16]

      Pollock J.D., Krempin M., Rudy B.. Differential effects of NGF, FGF, EGF, cAMP, and dexamethasone on neurite outgrowth and sodium channel expression in PC12 cells[J]. J. Neurosci., 1990,10:2626-2637.  

    17. [17]

      Tomaselli K.J., Damsky C.H., Reichardt L.F.. Interactions of a neuronal cell line (PC12) with laminin, collagen IV, and fibronectin:identification of integrinrelated glycoproteins involved in attachment and process outgrowth[J]. J. Cell Biol., 1987,105:2347-2358. doi: 10.1083/jcb.105.5.2347

    18. [18]

      Bellis S.L.. Advantages of RGD peptides for directing cell association with biomaterials[J]. Biomaterials, 2011,32:4205-4210. doi: 10.1016/j.biomaterials.2011.02.029

    19. [19]

      Hersel U., Dahmen C., Kessler H.. RGD modified polymers:biomaterials for stimulated cell adhesion and beyond[J]. Biomaterials, 2003,24:4385-4415. doi: 10.1016/S0142-9612(03)00343-0

    20. [20]

      Tashiro K., Sephel G.C., Weeks B.. A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth[J]. J. Biol. Chem., 1989,264:16174-16182.

    21. [21]

      Shin H., Jo S., Mikos A.G.. Biomimetic materials for tissue engineering[J]. Biomaterials, 2003,24:4353-4364. doi: 10.1016/S0142-9612(03)00339-9

    22. [22]

      Lee L.A., Nguyen Q.L., Wu L.Y.. Mutant plant viruses with cell binding motifs provide differential adhesion strengths and morphologies[J]. Biomacromolecules, 2012,13:422-431. doi: 10.1021/bm2014558

    23. [23]

      Kaur G., Wang C., Sun J., Wang Q.. The synergistic effects of multivalent ligand display and nanotopography on osteogenic differentiation of rat bone marrow stem cells[J]. Biomaterials, 2010,31:5813-5824. doi: 10.1016/j.biomaterials.2010.04.017

    24. [24]

      Luckanagul J., Lee L.A., Nguyen Q.L.. Porous alginate hydrogel functionalized with virus as three-dimensional scaffolds for bone differentiation[J]. Biomacromolecules, 2012,13:3949-3958. doi: 10.1021/bm301180c

    25. [25]

      Chung T.W., Yang M.G., Liu D.Z.. Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly(e-caprolactone) (PCL) surface with nanometer scale of surface disturbance[J]. J. Biomed. Mater. Res., 2005,A 72A:213-219.

    26. [26]

      Chung T.W., Lai D.M., Chen S.D., Lin Y.I.. Poly(e-caprolactone) scaffolds functionalized by grafting NGF and GRGD promote growth and differentiation of PC12 cells[J]. J. Biomed. Mater. Res., A, 2014,102:315-323. doi: 10.1002/jbm.a.v102.2

    27. [27]

      Lutolf M.P., Hubbell J.A.. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering[J]. Nat. Biotechnol., 2005,23:47-55. doi: 10.1038/nbt1055

    28. [28]

      Zhu D.W., Chen Z., Zhao K.Y.. Polypropylene non-woven supported fibronectin molecular imprinted calcium alginate/polyacrylamide hydrogel film for cell adhesion[J]. Chin. Chem. Lett., 2015,26:807-810. doi: 10.1016/j.cclet.2015.04.033

    29. [29]

      Wang L., Li L.L., Ma H.L., Wang H.. Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery[J]. Chin. Chem. Lett., 2013,24:351-358. doi: 10.1016/j.cclet.2013.03.018

    30. [30]

      Zustiak S.P., Durbal R., Leach J.B.. Influence of cell-adhesive peptide ligands on poly(ethylene glycol) hydrogel physical, mechanical and transport properties[J]. Acta Biomater., 2010,6:3404-3414. doi: 10.1016/j.actbio.2010.03.040

    31. [31]

      Hern D.L., Hubbell J.A.. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing[J]. J. Biomed. Mater. Res., 1998,39:266-276. doi: 10.1002/(ISSN)1097-4636

    32. [32]

      Ruoslahti E.. Rgd and other recognition sequences for integrins[J]. Annu. Rev. Cell Dev. Biol., 1996,12:697-715. doi: 10.1146/annurev.cellbio.12.1.697

    33. [33]

      Chen J.S., Altman G.H., Karageorgiou V.. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers[J]. J. Biomed. Mater. Res., 2003,A 67A:559-570.  

    34. [34]

      Bi X.D., Luckanagul J.A., Allen A.. Synthesis of PAMAM dendrimer-based fast cross-linking hydrogel for biofabrication[J]. J. Biomater. Sci. Polym. Ed., 2015,26:669-682. doi: 10.1080/09205063.2015.1056716

    35. [35]

      Saneinejad S., Shoichet M.S.. Patterned glass surfaces direct cell adhesion and process outgrowth of primary neurons of the central nervous system[J]. J. Biomed. Mater. Res., 1998,42:13-19. doi: 10.1002/(ISSN)1097-4636

    36. [36]

      Mann B.K., West J.L.. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds[J]. J. Biomed. Mater. Res., 2002,60:86-93. doi: 10.1002/(ISSN)1097-4636

    37. [37]

      Ranieri J.P., Bellamkonda R., Bekos E.J.. Spatial control of neuronal cell attachment and differentiation on covalently patterned laminin oligopeptide substrates[J]. Int. J. Dev. Neurosci., 1994,12:725-735. doi: 10.1016/0736-5748(94)90052-3

    38. [38]

      Bellamkonda R., Ranieri J.P., Aebischer P.. Laminin oligopeptide derivatized agarose gels allow three-dimensional neurite extension in vitro[J]. J. Neurosci. Res., 1995,41:501-509. doi: 10.1002/(ISSN)1097-4547

    39. [39]

      Gunn J.W., Turner S.D., Mann B.K.. Adhesive and mechanical properties of hydrogels influence neurite extension[J]. J. Biomed. Mater. Res., A, 2005,72:91-97.  

    40. [40]

      Johnson S., Nguyen V., Coder D.. Assessment of cell viability, in:Current Protocols in Cytometry, John Wiley & Sons[J]. Inc., New York, NY, 2001.  

    41. [41]

      Gatti R., Belletti S., Orlandini G.. Comparison of annexin V and calcein-AM as early vital markers of apoptosis in adherent cells by confocal laser microscopy[J]. J. Histochem. Cytochem., 1998,46:895-900. doi: 10.1177/002215549804600804

  • 加载中
    1. [1]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    2. [2]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    3. [3]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    4. [4]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    5. [5]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    6. [6]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    7. [7]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    8. [8]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    9. [9]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    10. [10]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    11. [11]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    12. [12]

      Ruijianghan ShiYujie ZhuWeitong LuYuhan ShaoYang ChenMi ZhouYunfeng LinSirong Shi . Tetrahedral framework nucleic acids enhance osteogenic differentiation and prevent apoptosis for dental follicle stem cell therapy in diabetic bone repair. Chinese Chemical Letters, 2025, 36(5): 110241-. doi: 10.1016/j.cclet.2024.110241

    13. [13]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    14. [14]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    15. [15]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    16. [16]

      Menglu GuoYing-Qi SongJunfei ChengGuoqiang DongXun SunChunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392

    17. [17]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    18. [18]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    19. [19]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    20. [20]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

Metrics
  • PDF Downloads(1)
  • Abstract views(900)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return