Citation: Xi Li-Li, Ma Hong-Bing, Tao Guan-Hong. Thiourea functionalized CdSe/CdS quantum dots as a fluorescent sensor for mercury ion detection[J]. Chinese Chemical Letters, ;2016, 27(9): 1531-1536. doi: 10.1016/j.cclet.2016.03.002 shu

Thiourea functionalized CdSe/CdS quantum dots as a fluorescent sensor for mercury ion detection

  • Corresponding author: Tao Guan-Hong, taogh@suda.edu.cn
  • Received Date: 25 January 2016
    Revised Date: 23 February 2016
    Accepted Date: 1 March 2016
    Available Online: 3 September 2016

Figures(9)

  • CdSe/CdS quantum dots (QDs) functionalized by thiourea (TU) were synthesized and used as a fluorescent sensor for mercury ion detection. The TU-functionalized QDs were prepared by bonding TU via electrostatic interaction to the core/shell CdSe/CdS QDs after capping with thioglycolic acid (TGA). It was observed that the fluorescence of the functionalized QDs was quenched upon the addition of Hg2+. The quantitative detection of Hg2+ with this fluorescent sensor could be conducted based on the linear relationship between the extent of quenching and the concentration of Hg2+ added in the range of 1-300 mg L-1. A detection limit of 0.56 mg L-1 was achieved. The sensor showed superior selectivity for Hg2+ and was successfully applied to the determination of mercury in environmental samples with satisfactory results.
  • 加载中
    1. [1]

      Clarkson T.W., Magos L., Myers G.J.. The toxicology of mercury-current exposures and clinical manifestations[J]. N. Engl. J. Med., 2003,349:1731-1737. doi: 10.1056/NEJMra022471

    2. [2]

      Müller A.K., Westergaard K., Christensen S., Sørensen S.J.. The effect of long-term mercury pollution on the soil microbial community[J]. FEMS Microbiol. Ecol., 2001,36:11-19. doi: 10.1111/fem.2001.36.issue-1

    3. [3]

      Li P., Feng X.B., Qiu G.L.. Methylmercury exposure and health effects from rice and fish consumption:a review[J]. Int. J. Environ. Res. Public Health, 2010,7:2666-2691. doi: 10.3390/ijerph7062666

    4. [4]

      Cizdziel J.V., Gerstenberger S.. Determination of total mercury in human hair and animal fur by combustion atomic absorption spectrometry[J]. Talanta, 2004,64:918-921. doi: 10.1016/j.talanta.2004.04.013

    5. [5]

      Hsu W.H., Jiang S.J., Sahayam A.C.. Determination of Cu, As, Hg and Pb in vegetable oils by electrothermal vaporization inductively coupled plasma mass spectrometry with palladium nanoparticles as modifier[J]. Talanta, 2013,117:268-272. doi: 10.1016/j.talanta.2013.09.013

    6. [6]

      Jena B.K., Raj C.R.. Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper[J]. Anal. Chem., 2008,80:4836-4844. doi: 10.1021/ac071064w

    7. [7]

      Zhou Q.X., Xing A., Zhao K.F.. Simultaneous determination of nickel, cobalt and mercury ions in water samples by solid phase extraction using multiwalled carbon nanotubes as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography[J]. J. Chromatogr. A, 2014,1360:76-81. doi: 10.1016/j.chroma.2014.07.084

    8. [8]

      Dong Y.P., Zhou Y., Wang J., Dong Y.Q., Wang C.M.. Electrogenerated chemiluminescence of quantum dots with lucigenin as coreactant for sensitive detection of catechol[J]. Talanta, 2016,146:266-271. doi: 10.1016/j.talanta.2015.08.054

    9. [9]

      Vasudevan D., Trinchi A., Hardin S.G., Cole I.S.. Fluorescent heavy metal cation sensing with water dispersible 2MPA capped CdSe/ZnS quantum dots[J]. J. Lumin., 2015,166:88-92. doi: 10.1016/j.jlumin.2015.04.043

    10. [10]

      Khataee A., Lotfi R., Hasanzadeh A., Iranifam M., Joo S.W.. A flow injection chemiluminescence method for determination of nalidixic acid based on KMnO4-morin sensitized with CdS quantum dots[J]. Spectrochim. Acta A, 2016,154:243-251. doi: 10.1016/j.saa.2015.10.039

    11. [11]

      Chen Y.F., Rosenzweig Z.. Luminescent CdS quantum dots as selective ion probes[J]. Anal. Chem., 2002,74:5132-5138. doi: 10.1021/ac0258251

    12. [12]

      Koneswaran M., Narayanaswamy R.. L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion[J]. Sens. Actuators B, 2009,139:104-109. doi: 10.1016/j.snb.2008.09.028

    13. [13]

      Ali E.M., Zheng Y.G., Yu H.H., Ying J.Y.. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots[J]. Anal. Chem., 2007,79:9452-9458. doi: 10.1021/ac071074x

    14. [14]

      Pei J.Y., Zhu H., Wang X.L., Zhang H.C., Yang X.R.. Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (Ⅱ) detection[J]. Anal. Chim. Acta, 2012,757:63-68. doi: 10.1016/j.aca.2012.10.037

    15. [15]

      Wang J.Z., Zhou X.P., Ma H.B., Tao G.H.. Diethyldithiocarbamate functionalized CdSe/CdS quantum dots as a fluorescent probe for copper ion detection[J]. Spectrochim. Acta A, 2011,81:178-183. doi: 10.1016/j.saa.2011.05.098

    16. [16]

      Zhao Q., Rong X.L., Ma H.B., Tao G.H.. Dithizone functionalized CdSe/CdS quantum dots as turn-on fluorescent probe for ultrasensitive detection of lead ion[J]. J. Hazard. Mater. 250-, 2013,251:45-52.  

    17. [17]

      Chen L., Zhao Q., Zhang X.Y., Tao G.H.. Determination of silver ion based on the redshift of emission wavelength of quantum dots functionalized with rhodanine[J]. Chin. Chem. Lett., 2014,25:261-264. doi: 10.1016/j.cclet.2013.10.029

    18. [18]

      Z.H. Liu, L.Z. San, Handbook of Analytical Chemistry, 2nd ed., Chemical Industry Press, Beijing, 2000.

    19. [19]

      Deng Z.T., Cao L., Tang F.Q., Zou B.S.. A new route to zinc-blende CdSe nanocrystals:mechanism and synthesis[J]. J. Phys. Chem. B, 2005,109:16671-16675. doi: 10.1021/jp052484x

    20. [20]

      National Environmental Protection Agency, GB/T 17136-1997 Soil Quality-determination of Total Mercury-cold Atomic Absorption Spectrophotometry, NEPA, Beijing, 1997.

    21. [21]

      Chan W.C.W., Nie S.M.. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998,281:2016-2018. doi: 10.1126/science.281.5385.2016

    22. [22]

      Zhang Y.H., Zhang H.S., Guo X.F., Wang H.. L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper (Ⅱ) determination[J]. Microchem. J., 2008,89:142-147. doi: 10.1016/j.microc.2008.01.008

    23. [23]

      N.B.Brahim , N.B.H.Mohamed , M.Echabaane , al et. Thioglycerol-functionalizedCdSe quantum dots detecting cadmium ions[J]. Sens. Actuators B, 2015,220:1346-1353. doi: 10.1016/j.snb.2015.07.049

    24. [24]

      J.R. Lakowicz, Quenching of fluorescence, in:J.R. Lakowicz (Ed.), Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York, USA, 2006, pp. 277-330.

    25. [25]

      Liu X.F., Xia Y.M., Fang Y.. Effect of metal ions on the interaction between bovine serum albumin and berberine chloride extracted from a traditional Chinese Herb coptis chinensis franch[J]. J. Inorg. Biochem., 2005,99:1449-1457. doi: 10.1016/j.jinorgbio.2005.02.025

    26. [26]

      Ghali M.. Static quenching of bovine serum albumin conjugated with small size CdS nanocrystalline quantum dots[J]. J. Lumin., 2010,130:1254-1257. doi: 10.1016/j.jlumin.2010.02.034

    27. [27]

      Kamat P.V.. Photochemistry on nonreactive and reactive (semiconductor) surfaces[J]. Chem. Rev., 1993,93:267-300. doi: 10.1021/cr00017a013

    28. [28]

      H.B. Jia, H. Kuang, Handbook of Organic Chemistry, Science Press, Beijing, 2006.

    29. [29]

      Wu P., Yan X.P.. Ni2+-modulated homocysteine-capped CdTe quantum dots as a turn-on photoluminescent sensor for detecting histidine in biological fluids[J]. Biosens. Bioelectron., 2010,26:485-490. doi: 10.1016/j.bios.2010.07.068

    30. [30]

      Liu I.S., Lo H.H., Chien C.T.. Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands[J]. J. Mater. Chem., 2008,18:675-682. doi: 10.1039/b715253a

    31. [31]

      de Silva A.P., Nimal Gunaratne H.Q., Gunnlaugsson T.. Signaling recognition events with fluorescent sensors and switches[J]. Chem. Rev., 1997,97:1515-1566. doi: 10.1021/cr960386p

    32. [32]

      Callan J.F., Mulrooney R.C., Kamila S., McCaughan B.. Anion sensing with luminescent quantum dots-a modular approach based on the photoinduced electron transfer (PET) mechanism[J]. J. Fluoresc., 2008,18:527-532. doi: 10.1007/s10895-007-0295-9

    33. [33]

      M.L. Li, Concise Handbook of Chemical Data, Chemical Industry Press, Beijing, 2003.

    34. [34]

      Ruedas-Rama M.J., Hall E.A.H.. Multiplexed energy transfer mechanisms in a dualfunction quantum dot for zinc and manganese[J]. Analyst, 2009,134:159-169. doi: 10.1039/B814879A

    35. [35]

      Satnami M.L., Vaishanav S.K., Nagwanshi R., Ghosh K.K.. Spectrofluorometric determination of mercury and lead by colloidal CdS nanomaterial[J]. J. Dispers. Sci. Technol., 2016,37:196-204. doi: 10.1080/01932691.2015.1039020

    36. [36]

      Duan J.L., Jiang X.C., Ni S.Q., Yang M., Zhan J.H.. Facile synthesis of N-acetyl-Lcysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg2+[J]. Talanta, 2011,85:1738-1743. doi: 10.1016/j.talanta.2011.06.071

  • 加载中
    1. [1]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    2. [2]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    3. [3]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    4. [4]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    5. [5]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    6. [6]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    7. [7]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    8. [8]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    9. [9]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    10. [10]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    11. [11]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    12. [12]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    13. [13]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    14. [14]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    15. [15]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    16. [16]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    17. [17]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    18. [18]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    19. [19]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    20. [20]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

Metrics
  • PDF Downloads(2)
  • Abstract views(732)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return