Citation: Wang Qi, Feng Yan, Jiang Jun, Wang Wen-Juan, Chen Jiu-You, Sheng Hong-Ting, Meng Xiang-Ming, Zhu Man-Zhou. A coumarin-based colorimetric and fluorescent probe for the highly selective detection of Au3+ ions[J]. Chinese Chemical Letters, ;2016, 27(9): 1563-1566. doi: 10.1016/j.cclet.2016.02.021 shu

A coumarin-based colorimetric and fluorescent probe for the highly selective detection of Au3+ ions

  • Corresponding author: Feng Yan, fy70@163.com
  • Received Date: 4 January 2016
    Revised Date: 28 January 2016
    Accepted Date: 23 February 2016
    Available Online: 2 September 2016

Figures(5)

  • We develop a novel coumarin-alkyne derivative (NC7-AL), which can specifically react with Au3+ and give a colorimetric and fluorescent "turn-on" response toward Au3+. Notably, other alkynophilic metal species such as Au+, Ag+, Pd2+, Ni2+, Cu2+, and Hg2+ do not produce an interfering signal. A good linear relationship between emission intensity at 420 nm and Au3+ concentration from 0 to 2 equivalent is observed, and the detection limit (3σ/k) is estimated to be ca. 3.58 nmol/L. Harnessing the Au3+-induced color change from light yellow to colorless, we find that NC7-AL-based modified TLC plate can be used for convenient naked-eye detection of Au3+.
  • 加载中
    1. [1]

      Fierro-Gonzalez J.C., Gates B.C.. Catalysis by gold dispersed on supports:the importance of cationic gold[J]. Chem. Soc. Rev., 2008,37:2127-2134. doi: 10.1039/b707944n

    2. [2]

      Hashmi A.S.K., Rudolph M.. Gold catalysis in total synthesis[J]. Chem. Soc. Rev., 2008,37:1766-1775. doi: 10.1039/b615629k

    3. [3]

      Brown D.H., Smith W.E.. The chemistry of the gold drugs used in the treatment of rheumatoid arthritis[J]. Chem. Soc. Rev., 1980,9:217-240. doi: 10.1039/cs9800900217

    4. [4]

      Dreaden E.C., Alkilany A.M., Huang X.H., Murphy C.J., El-Sayed M.A.. The golden age:gold nanoparticles for biomedicine[J]. Chem. Soc. Rev., 2012,41:2740-2779. doi: 10.1039/C1CS15237H

    5. [5]

      Sperling R.A., Gil P.R., Zhang F., Zanella M., Parak W.J.. Biological applications of gold nanoparticles[J]. Chem. Soc. Rev., 2008,37:1896-1908. doi: 10.1039/b712170a

    6. [6]

      Arcadi A.. Alternative synthetic methods through new developments in catalysis by gold[J]. Chem. Rev., 2008,108:3266-3325. doi: 10.1021/cr068435d

    7. [7]

      Rudolph M., Hashmi A.S.K.. Gold catalysis in total synthesis-an update[J]. Chem. Soc. Rev., 2012,41:2448-2462. doi: 10.1039/C1CS15279C

    8. [8]

      Hashmi A.S.K.. Gold-catalyzed organic reactions[J]. Chem. Rev., 2007,107:3180-3211. doi: 10.1021/cr000436x

    9. [9]

      Li Z.G., Brouwer C., He C.. Gold-catalyzed organic transformations[J]. Chem. Rev., 2008,108:3239-3265. doi: 10.1021/cr068434l

    10. [10]

      Corma A., Leyva-Pérez A., Sabater M.J.. Gold-catalyzed carbon-heteroatom bondforming reactions[J]. Chem. Rev., 2011,111:1657-1712. doi: 10.1021/cr100414u

    11. [11]

      Shaw Ⅲ C.F.. Gold-based therapeutic agents[J]. Chem. Rev., 1999,99:2589-2600. doi: 10.1021/cr980431o

    12. [12]

      Ott I.. On the medicinal chemistry of gold complexes as anticancer drugs[J]. Coord. Chem. Rev., 2009,253:1670-1681. doi: 10.1016/j.ccr.2009.02.019

    13. [13]

      Navarro M.. Gold complexes as potential anti-parasitic agents[J]. Coord. Chem. Rev., 2009,253:1619-1626. doi: 10.1016/j.ccr.2008.12.003

    14. [14]

      Block W.D., Knapp E.L.. Metabolism, toxicity, and manner of action of gold compounds in the treatment of arthritis VⅡ. The effect of various gold compounds on the oxygen consumption of rat tissues[J]. J. Pharmacol. Exp. Ther., 1945,83:275-278.  

    15. [15]

      Jones J.R.E.. A further study of the relation between toxicity and solution pressure, with Polycelis nigra as test animal[J]. J. Exp. Biol., 1940,17:408-415.  

    16. [16]

      Connor E.E., Mwamuka J., Gole A., Murphy C.J., Wyatt M.D.. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity[J]. Small, 2005,1:325-327. doi: 10.1002/(ISSN)1613-6829

    17. [17]

      Goodman C.M., McCusker C.D., Yilmaz T., Rotello V.M.. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains[J]. Bioconjugate Chem., 2004,15:897-900. doi: 10.1021/bc049951i

    18. [18]

      Habib A., Tabata M.. Oxidative DNA damage induced by HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid) buffer in the presence of Au(Ⅲ)[J]. J. Inorg. Biochem., 2004,98:1696-1702. doi: 10.1016/j.jinorgbio.2004.07.005

    19. [19]

      Nyarko E., Hara T., Grab D.J.. In vitro toxicity of palladium(Ⅱ) and gold(Ⅲ) porphyrins and their aqueous metal ion counterparts on Trypanosoma brucei brucei growth[J]. Chem. Biol. Interact., 2004,148:19-25. doi: 10.1016/j.cbi.2004.03.004

    20. [20]

      Zhang J.F., Zhou Y., Yoon J., Kim J.S.. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions)[J]. Chem. Soc. Rev., 2011,40:3416-3429. doi: 10.1039/c1cs15028f

    21. [21]

      Singha S., Kim D., Seo H., Cho S.W., Ahn K.H.. Fluorescence sensing systems for gold and silver species[J]. Chem. Soc. Rev., 2015,44:4367-4399. doi: 10.1039/C4CS00328D

    22. [22]

      Jou M.J., Chen X.Q., Swamy K.M.K.. Highly selective fluorescent probe for Au3+ based on cyclization of propargylamide[J]. Chem. Commun., 2009,46:7218-7220.

    23. [23]

      Emrullahoğlu M., Karakuş a E., Üçüncü M.. A rhodamine based "turn-on" chemodosimeter for monitoring gold ions in synthetic samples and living cells[J]. Analyst, 2013,138:3638-3641. doi: 10.1039/c3an00024a

    24. [24]

      Egorova O.A., Seo H., Chatterjee A., Ahn K.H.. Reaction-based fluorescent sensing of Au(I)/Au(Ⅲ) species:mechanistic implications on vinylgold intermediates[J]. Org. Lett., 2010,12:401-403. doi: 10.1021/ol902395x

    25. [25]

      Song F.L., Ning H.F., She H.Y., Wang J.Y., Peng X.J.. A turn-on fluorescent probe for Au3+ based on rodamine derivative and its bioimaging application[J]. Sci. China Chem., 2014,57:1043-1047. doi: 10.1007/s11426-014-5107-x

    26. [26]

      Seo H., Jun M.E., Egorova O.A.. A reaction-based sensing scheme for gold species:introduction of a (2-ethynyl) benzoate reactive moiety[J]. Org. Lett., 2012,14:5062-5065. doi: 10.1021/ol302291c

    27. [27]

      Patil N.T., Shinde V.S., Thakare M.S.. Exploiting the higher alkynophilicity of Au-species:development of a highly selective fluorescent probe for gold ions[J]. Chem. Commun., 2012,48:11229-11231. doi: 10.1039/c2cc35083a

    28. [28]

      Wang J.B., Wu Q.Q., Min Y.Z., Liub Y.Z., Song Q.H.. A novel fluorescent probe for Au(Ⅲ)/Au(I) ions based on an intramolecular hydroamination of a Bodipy derivative and its application to bioimaging[J]. Chem. Commun., 2012,48:744-746. doi: 10.1039/C1CC16128H

    29. [29]

      Chinapang P., Ruangpornvisuti V., Sukwattanasinitt M., Rashatasakhon P.. Ferrocenyl derivative of 1, 8-naphthalimide as a new turn-on fluorescent sensor for Au(Ⅲ) ion[J]. Dyes Pigment., 2015,112:236-238. doi: 10.1016/j.dyepig.2014.07.013

    30. [30]

      Do J.H., Kim H.N., Yoon J., Kim J.S., Kim H.J.. A rationally designed fluorescence turn-on probe for the gold(Ⅲ) ion[J]. Org. Lett., 2010,12:932-934. doi: 10.1021/ol902860f

    31. [31]

      Wang B.L., Fu T., Yang S., Li J.S., Chen Y.. An intramolecular charge transfer (ICT)-based dual emission fluorescent probe for the ratiometric detection of gold ions[J]. Anal. Methods, 2013,5:3639-3641. doi: 10.1039/c3ay40450a

    32. [32]

      Toumi M., Couty F., Evano G.. Total synthesis of paliurine F[J]. Angew. Chem. Int. Ed., 2007,46:572-575. doi: 10.1002/(ISSN)1521-3773

    33. [33]

      Yin H.J., Zhang B.C., Yu H.Z.. Two-photon fluorescent probes for biological Mg2+ detection based on 7-substituted coumarin[J]. J. Org. Chem., 2015,80:4306-4312. doi: 10.1021/jo502775t

    34. [34]

      Lin S.Y., Zhu H.J., Xu W.J., Wang G.M., Fu N.Y.. A squaraine based fluorescent probe for mercury ion via coordination induced deaggregation signaling[J]. Chin. Chem. Lett., 2014,25:1291-1295. doi: 10.1016/j.cclet.2014.04.027

    35. [35]

      Üçüncü M., Karakuş E., Emrullahoğlu M.. A ratiometric fluorescent probe for gold and mercury ions[J]. Chem. Eur. J., 2015,21:13201-13205. doi: 10.1002/chem.v21.38

  • 加载中
    1. [1]

      Fangbing WangQiankun ZengJing RenMin ZhangGuoyue Shi . A membrane-based plasma separator coupled with ratiometric fluorescent sensor for biochemical analysis in whole blood. Chinese Chemical Letters, 2025, 36(7): 110494-. doi: 10.1016/j.cclet.2024.110494

    2. [2]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    3. [3]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    4. [4]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    5. [5]

      Qian PangFangjun HuoYongkang YueCaixia Yin . ONOO and viscosity dual-response fluorescent probe for arthritis imaging in vivo. Chinese Chemical Letters, 2025, 36(9): 110713-. doi: 10.1016/j.cclet.2024.110713

    6. [6]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    7. [7]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    8. [8]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    9. [9]

      Jiayu ZengMinhui LiuTing YangJia HuangSongjiao LiWanting ZhangDan ChengLongwei HeJia Zhou . Two-dimensional design strategy to construct smart dual-responsive fluorescent probe for the precise tracking of ischemic stroke. Chinese Chemical Letters, 2025, 36(5): 110166-. doi: 10.1016/j.cclet.2024.110166

    10. [10]

      Xianzhu LuoFeifei YuRui WangTian SuPan LuoPengfei WenFabiao Yu . A near-infrared two-photon fluorescent probe for the detection of HClO in inflammatory and tumor-bearing mice. Chinese Chemical Letters, 2025, 36(7): 110531-. doi: 10.1016/j.cclet.2024.110531

    11. [11]

      Xinyi ZhaoYuai DuanZihan LiuHua GengYaping LiZhongfeng LiTianyu Han . Mapping sweat pores for biometric identification based on a donor-acceptor hydrophilic fluorescent probe. Chinese Chemical Letters, 2025, 36(8): 110617-. doi: 10.1016/j.cclet.2024.110617

    12. [12]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    13. [13]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    14. [14]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    15. [15]

      Wenping DongMo MaJingkang LiLanlan XuDejiang GaoPinyi MaDaqian Song . Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chinese Chemical Letters, 2025, 36(5): 110147-. doi: 10.1016/j.cclet.2024.110147

    16. [16]

      Lei LiGuang YangTianbai XiongTingzhu DuanJia WangXin Wang . Metal-free click polymerization of thiols and chalcone-derived internal olefins in air to prepare functional clusteroluminescent polythioethers for dual-response fluorescent probe. Chinese Chemical Letters, 2025, 36(11): 111374-. doi: 10.1016/j.cclet.2025.111374

    17. [17]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    18. [18]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    19. [19]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    20. [20]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

Metrics
  • PDF Downloads(0)
  • Abstract views(1113)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return