Citation: Gao Na, Li Jia-Zhu, Li Yan-Long, Wang Zhen, Wang Jin-Jun. A facile synthesis of cyano-chlorins related to chlorophyll from formyl (pyro)-pheophorbide-α by a tandem transformation of the aldehyde into a nitrile group[J]. Chinese Chemical Letters, ;2016, 27(5): 789-794. doi: 10.1016/j.cclet.2016.01.008 shu

A facile synthesis of cyano-chlorins related to chlorophyll from formyl (pyro)-pheophorbide-α by a tandem transformation of the aldehyde into a nitrile group

  • Corresponding author: Li Jia-Zhu, lijiazhu@163.com Wang Jin-Jun, wjj1955@163.com
  • Received Date: 27 October 2015
    Revised Date: 14 December 2015
    Accepted Date: 22 December 2015
    Available Online: 12 May 2016

Figures(5)

  • A facile synthesis for cyanochlorin related to chlorophyll from a formyl-substituted chlorin, by the oxidation ofmethyl (pyro)pheophorbide-Ⅱ, was accomplished. These readily available chlorin aldehydes were assembled together with hydroxylamine hydrochloride in a tandem process to produce the corresponding chlorin nitriles inmoderate to good yields. The formation of chlorin nitrile was discussed and a possible mechanism for the corresponding cyanation reaction was tentatively proposed.
  • 加载中
    1. [1]

      Zhang G., Piotter W.R., Camacho S.H.. Synthesis, photophysical properities, tumor uptake, and preliminary in vivo photpsensitizing efficacy of a homologous series of 3-(1'-alkyloxy)ethyl-3-devinylpurpurin-18-N-alkylimides with variable lipophilicity[J]. J. Med. Chem., 2001,44:1540-1559.

    2. [2]

      Ethirajan M., Chen Y.H., Joshi P.. The role of porphyrin chemistry in tumor imaging and photodynamic therapy[J]. Chem. Soc. Rev., 2011,40:340-362.

    3. [3]

      Li J.Z., Wang J.J., Yoon I.. Synthesis of novel wavelength cationic shlorins via strereoselective aldol-like condensation[J]. Bioorg. Med. Chem. Lett., 2012,22:1846-1849.

    4. [4]

      Liu Y., Sen X.X., Li J.Z.. Cyclopropylation of chlorophyllous degradation products and synthesis of chlorin derivatives[J]. Chin. J. Org. Chem., 2014,34:552-560.

    5. [5]

      Joshi P., Ethirsjsn M., Goswami L.N.. Synthesis, spectroscopic, and in vitro photosensitizing efficacy of ketobacteriochlorins derived from ring-B and ring-D reduced chlorins via pinacol-pinacolone rearrangement[J]. J. Org. Chem., 2011,76:8629-8640.

    6. [6]

      Trofimov B.A., Vasiltsov A.M., Mikhaleva A.I.. Synthesis of 1-vinylpyrrole-2-carbonitriles[J]. Tetrahedron Lett., 2009,50:97-100.

    7. [7]

      Luca L.D., Giacomelli G., Porcheddu A.. Beckmann rearrangement of oxime under very mild conditions[J]. J. Org. Chem., 2002,67:6272-6274.

    8. [8]

      Wang J.J., Zhang P., Li J.Z.. Synthesis of novel C12-nonmethylated chlorophyll derivatives from methyl pyropheophorbide-Ⅱ by allomerization and functionalization[J]. Bull. Korean Chem. Soc., 2011,32:3473-3476.

    9. [9]

      Sasaki S., Mizutani K., Kunieda M.. Synthesis and optical properties of C3-ethynlated chlorin and ǐ-extended chlorophyll dyads[J]. Tetrahedron, 2011,67:6065-6072.

    10. [10]

      Smith K.M., Goff D.A., Simpson D.J.. Meso substitution of chlorophyll derivatives:direct route for transformation of bacteriopheophorbide-d into bacteriopheophorbide-c[J]. J. Am. Chem. Soc., 1985,107:4946-4951.

    11. [11]

      Han G.F., Wang J.J., Qu Y.. Chemical modification of derivatives of purpurin-18 imide[J]. Chin. J. Org. Chem., 2006,26:43-50.

    12. [12]

      Han G.F., Wang J.J., Qu Y.. Synthesis of purpurin-18 imide derivatives[J]. Chin. J. Org. Chem., 2005,25:319-326.

    13. [13]

      Wang J.J., Zhao Y., Wu X.R.. Protection of the exocyclic carbonyl group of 2-acyl pyropheophorbide a methyl ester and their reactions with Grignard reagents[J]. Chin. J. Org. Chem., 2002,22:565-570.

    14. [14]

      Wang J.J., Fan H.G., Wu X.R.. Bromination reaction of methyl pyropheophorbide-Ⅱ[J]. Chin. J. Org. Chem., 2004,24:537-542.

    15. [15]

      Wang J.J., Fan H.G., Yin J.G.. Chemical modification along N21-N23 axis in methyl (pyro)pheophorbide-Ⅱ and effect on the visible spectra[J]. Acta Chim. Sin., 2003,61:907-916.

    16. [16]

      Ji J.Y., Yin J.G., Zhang Q.. C(12)-nomethylation of pyropheophorbide-Ⅱ and synthesis of chlorophyllous chlorin derivatives[J]. Chin. J. Org. Chem., 2014,34:2047-2056.

    17. [17]

      Li J.Z., Liu W.H., Li F.G.. Air oxidation and rearrangement reactions of methyl (pyro)pheophorbide-Ⅱ in the presence of lithiumhydroxide[J]. Chin. J. Org. Chem., 2007,27:1594-1599.

    18. [18]

      Wang J.J.. Progress in the chemical reactions of chlorophyll-Ⅱ derivatives and synthesis of polysubstituted chlorin or porphyrin[J]. Chin. J. Org. Chem., 2005,25:1353-1371.

    19. [19]

      Li J.Z., Liu Y., X.S X.. Highly efficient synthesis of novel methyl 132-methylene mesopyropheophorbide-Ⅱ and its stereoselective Michael addition reaction[J]. Org. Biomol. Chem., 2015,13:1992-1995.

    20. [20]

      Tamiaki H., Okamoto Y., Mikata Y.. Photooxidative cleavage of zinc 20-substituted chlorophyll derivatives:conformationally P-helix-favored formation of regioselectively 19-20 opened linear tetrapyrroles[J]. Photochem. Photobiol. Sci., 2012,11:898-907.

    21. [21]

      Ethirajan M., Joshi P., Wiloliam W.H.. Remarkable regioselective position-10 bromination of bacteriopyropheophorbide-Ⅱ and ring-B reduced pyropheophorbide-Ⅱ[J]. Org. Lett., 2011,13:1956-1959.

  • 加载中
    1. [1]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    2. [2]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    3. [3]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    4. [4]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    5. [5]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    6. [6]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    7. [7]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    8. [8]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    9. [9]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    10. [10]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    11. [11]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    12. [12]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    13. [13]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    14. [14]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    15. [15]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    16. [16]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    17. [17]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    18. [18]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    19. [19]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    20. [20]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

Metrics
  • PDF Downloads(3)
  • Abstract views(755)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return