Citation: Yang Shu, Ying Meng, Ming-Li Chen, Jian-Hua Wang. Isolation of hemoglobin with metal-organic frameworks Y(BTC)(H2O)6[J]. Chinese Chemical Letters, ;2015, 26(12): 1460-1464. doi: 10.1016/j.cclet.2015.10.013 shu

Isolation of hemoglobin with metal-organic frameworks Y(BTC)(H2O)6

  • Corresponding author: Ming-Li Chen,  Jian-Hua Wang, 
  • Received Date: 29 July 2015
    Available Online: 21 October 2015

  • The hierarchical metal-organic frameworks (MOFs), such as Y(BTC)(H2O)6, are prepared with yttrium nitrate and benzene-1,3,5-tricarboxylic acid at room temperature. The product is characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The Y(BTC)(H2O)6 particles are sufficiently rigid for performing solid phase extraction and they exhibit favorable selectivity toward the adsorption of hemoglobin. The adsorption behavior of hemoglobin onto the Y(BTC)(H2O)6 fits the Langmuir adsorption model with a theoretical adsorption capacity of 555.6 mg g-1 . An adsorption efficiency of 87.7% for 100 μgmL-1 hemoglobin in 1 mL sample solution (at pH 6.0) is achieved with 0.40 mg Y(BTC)(H2O)6. 77.3% of the retained hemoglobin is readily recovered using a 0.5% (m/v) SDS solution as the stripping reagent. Circular dichroism spectra indicated that the conformation of hemoglobin is maintained during the adsorption-desorption process. The MOFs material is applied for the isolation of hemoglobin from human blood and the purity of the obtained hemoglobin is further verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
  • 加载中
    1. [1]

      [1] Q.L. Zhu, Q. Xu, Metal-organic framework composites, Chem. Soc. Rev. 43 (2014) 5468-5512.

    2. [2]

      [2] K. Yusuf, A. Aqel, Z. Alothman, Metal-organic frameworks in chromatography, J. Chromatogr. A 1348 (2014) 1-16.

    3. [3]

      [3] J.P. Lei, R.C. Qian, P.H. Ling, L. Cui, H.X. Ju, Design and sensing applications of metal-organic framework composites, TrAC Trends Anal. Chem. 58 (2014) 71-78.

    4. [4]

      [4] Z.Y. Gu, J. Park, A. Raiff, Z.W. Wei, H.C. Zhou, Metal-organic frameworks as biomimetic catalysts, ChemCatChem 6 (2014) 67-75.

    5. [5]

      [5] N.C. Burtch, H. Jasuja, K.S. Walton, Water stability and adsorption in metal- organic frameworks, Chem. Rev. 114 (2014) 10575-10612.

    6. [6]

      [6] Z.Y. Gu, Y.J. Chen, J.Q. Jiang, X.P. Yan, Metal-organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples, Chem. Commun. 47 (2011) 4787-4789.

    7. [7]

      [7] C.B. Messner, M.R. Mirza, M. Rainer, et al., Selective enrichment of phosphopeptides by a metal-organic framework, Anal. Methods 5 (2013) 2379-2383.

    8. [8]

      [8] Y.W. Zhang, Z. Li, Q. Zhao, et al., A facilely synthesized amino-functionalized metal-organic framework for highly specific and efficient enrichment of glycopeptides, Chem. Commun. 50 (2014) 11504-11506.

    9. [9]

      [9] M. Zhao, C.H. Deng, X.M. Zhang, P.Y. Yang, Facile synthesis of magnetic metal organic frameworks for the enrichment of low-abundance peptides for MALDI- TOF MS analysis, Proteomics 13 (2013) 3387-3392.

    10. [10]

      [10] J.N. Zheng, Z. Lin, G. Lin, H.H. Yang, L. Zhang, Preparation of magnetic metal- organic framework nanocomposites for highly specific separation of histidinerich proteins, J. Mater. Chem. B 3 (2015) 2185-2191.

    11. [11]

      [11] J.W. Liu, Y. Zhang, X.W. Chen, J.H. Wang, Graphene oxide-rare earth metal- organic framework composites for the selective isolation of hemoglobin, ACS Appl. Mater. Interfaces 6 (2014) 10196-10204.

    12. [12]

      [12] S.Z. Li, F.W. Huo, Metal-organic framework composites: from fundamentals to applications, Nanoscale 7 (2015) 7482-7501.

    13. [13]

      [13] T.W. Duan, B. Yan, Hybrids based on lanthanide ions activated yttrium metal- organic frameworks: functional assembly, polymer film preparation and luminescence tuning, J. Mater. Chem. C 2 (2014) 5098-5104.

    14. [14]

      [14] F. Wang, K.J. Deng, G.L. Wu, et al., Facile and large-scale syntheses of nanocrystal rare earth metal-organic frameworks at room temperature and their photoluminescence properties, J. Inorg. Organomet. Polym. 22 (2012) 680-685.

    15. [15]

      [15] Z. Rzaczyń ska, A. Ostasz, S. Pikus, Thermal properties of rare earth elements complexes with 1,3,5-benzenetricarboxylic acid, J. Therm. Anal. Calorim. 82 (2005) 347-351.

    16. [16]

      [16] K. Nakamoto, Infrared and Raman Spectra of Inorganic Coordination Compounds, John Wiley, New York, NY, 2006.

    17. [17]

      [17] Y.H. Wen, J.K. Cheng, Y.L. Feng, et al., Synthesis and crystal structure of [La(BTC)(H2O)6]n, Chin. J. Struct. Chem. 24 (2005) 1440-1444.

    18. [18]

      [18] J.H. Luo, H.W. Xu, Y. Liu, et al., Hydrogen adsorption in a highly stable porous rareearth metal-organic framework: sorption properties and neutron diffraction studies, J. Am. Chem. Soc. 130 (2008) 9626-9627.

    19. [19]

      [19] J. Rouquerol, F. Rouquerol, K.S.W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic Press, San Diego, CA, 1998.

    20. [20]

      [20] Y. Shu, X.W. Chen, J.H. Wang, Ionic liquid-polyvinyl chloride ionomer for highly selective isolation of basic proteins, Talanta 81 (2010) 637-642.

  • 加载中
    1. [1]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    3. [3]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    4. [4]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    5. [5]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    6. [6]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    7. [7]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    8. [8]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    9. [9]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

    10. [10]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    11. [11]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    12. [12]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    13. [13]

      Changmin LiuYing WangYongqi BaoYuqing Lin . Metal-organic framework mimetic enzymes: Exploring new horizons in brain chemistry. Chinese Chemical Letters, 2025, 36(9): 110652-. doi: 10.1016/j.cclet.2024.110652

    14. [14]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    15. [15]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    16. [16]

      Zhi-Xin LiXiao-Feng QiuPei-Qin Liao . Efficient electroreduction of CO2 to acetate with relative purity of 100% by ultrasmall Cu2O nanoparticle on a conductive metal-organic framework. Chinese Chemical Letters, 2025, 36(11): 110473-. doi: 10.1016/j.cclet.2024.110473

    17. [17]

      Shan-Qing YangLu-Lu WangRajamani KrishnaBo XingLei ZhouFei-Yang ZhangQiang ZhangYi-Long LiChao-Sheng BaoTong-Liang Hu . Efficient C3H6/C3H8 separation within a bifunctional ultramicroporous metal-organic framework with high purity and record packing density. Chinese Chemical Letters, 2025, 36(12): 110556-. doi: 10.1016/j.cclet.2024.110556

    18. [18]

      Xin-Lou YangJieying HuHao ZhongQia-Chun LinZhiqing LinLai-Hon ChungJun He . Building metal-thiolate sites and forming heterojunction in Hf- and Zr-based thiol-dense frameworks towards stable integrated photocatalyst for hydrogen evolution. Chinese Chemical Letters, 2025, 36(7): 110120-. doi: 10.1016/j.cclet.2024.110120

    19. [19]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

    20. [20]

      Kunpeng ZhouZhihao ShiXiao-Hong YiPeng WangAiqun LiChong-Chen Wang . MOFs helping heritage against environmental threats. Chinese Chemical Letters, 2025, 36(5): 110226-. doi: 10.1016/j.cclet.2024.110226

Metrics
  • PDF Downloads(0)
  • Abstract views(1305)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return