Citation:
Huai-Yin Chen, Jin Wang, Le Meng, Tao Yang, Kui Jiao. Thin-layered MoS2/polyaniline nanocomposite for highly sensitive electrochemical detection of chloramphenicol[J]. Chinese Chemical Letters,
;2016, 27(02): 231-234.
doi:
10.1016/j.cclet.2015.09.018
-
In this study, we synthesized molybdenum disulfide/polyaniline (MoS2/PANI) nanocomposite via in situ polymerization of aniline in the presence of thin-layered MoS2. The as-prepared MoS2/PANI nanocomposite obtained an improved electrochemical performance due to the physisorption interaction between aromatic aniline and the basal plane of MoS2. Furthermore, we constructed a new kind of electrochemical sensor based on MoS2/PANI nanocomposite for the detection of chloramphenicol, which showed an excellent performance. The sensor has a high sensitivity and wide detection range from 1×10-7 mol/L to 1×10-4 mol/L, with a low detection limit of 6.9×10-8 mol/L.
-
Keywords:
- MoS2,
- Polyaniline,
- Electrochemical detection,
- Chloramphenicol
-
-
-
[1]
[1] C.T. Kong, D.E. Holt, S.K. Ma, A.K.W. Lie, L.C. Chan, Effects of antioxidants and a caspase inhibitor on chloramphenicol-induced toxicity of human bone marrow and HL-60 cells, Hum. Exp. Toxicol. 19 (2000) 503-510.
-
[2]
[2] L. Agüí, A. Guzmán, P. Yáñez-Sedeñ o, J.M. Pingarró n, Voltammetric determination of chloramphenicol in milk at electrochemically activated carbon fibre microelectrodes, Anal. Chim. Acta 461 (2002) 65-73.
-
[3]
[3] P. Li, Y.M. Qiu, H.X. Cai, et al., Simultaneous determination of chloramphenicol, thiamphenicol, and florfenicol residues in animal tissues by gas chromatography/mass spectrometry, Chin. J. Chromatogr. 24 (2006) 14-18.
-
[4]
[4] S.I. Kawano, H.Y. Hao, Y. Hashi, J.M. Lin, Analysis of chloramphenicol in honey by on-line pretreatment liquid chromatography-tandem mass spectrometry, Chin. Chem. Lett. 26 (2015) 36-38.
-
[5]
[5] S. Teixeira, C. Delerue-Matos, A. Alves, L. Santos, Fast screening procedure for antibiotics in wastewaters by direct HPLC-DAD analysis, J. Sep. Sci. 31 (2008) 2924-2931.
-
[6]
[6] W.R. Jin,X.Y.Ye, D.Q.Yu,Q.Dong,Measurement of chloramphenicol bycapillary zone electrophoresis following end-column amperometric detection at a carbon fiber micro-disk array electrode, J. Chromatogr. B: Biom. Sci. Appl. 741 (2000) 155-162.
-
[7]
[7] M.C. Icardo, M. Misiewicz, A. Ciucu, J.V.G. Mateo, J.M. Calatayud, FI-on line photochemical reaction for direct chemiluminescence determination of photodegradated chloramphenicol, Talanta 60 (2003) 405-414.
-
[8]
[8] R.R. Yang, J.L. Zhao, M.J. Chen, et al., Electrocatalytic determination of chloramphenicol based on molybdenum disulfide nanosheets and self-doped polyaniline, Talanta 131 (2015) 619-623.
-
[9]
[9] N. Prabhakar, K. Arora, H. Singh, B.D. Malhotra, Polyaniline based nucleic acid sensor, J. Phys. Chem. B 112 (2008) 4808-4816.
-
[10]
[10] T. Yang, Q.H. Li, X. Li, et al., Freely switchable impedimetric detection of target gene sequence based on synergistic effect of ERGNO/PANI nanocomposites, Biosens. Bioelectron. 42 (2013) 415-418.
-
[11]
[11] H.S.S.R. Matte, A. Gomathi, A.K. Manna, et al., MoS2 and WS2 analogues of graphene, Angew. Chem. Int. Ed. 49 (2010) 4059-4062.
-
[12]
[12] E. Benavente, M.A.S. Ana, F. Mendizábal, G. González, Intercalation chemistry of molybdenum disulfide, Coord. Chem. Rev. 224 (2002) 87-109.
-
[13]
[13] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6 (2011) 147-150.
-
[14]
[14] K. Chang, W.X. Chen, In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries, Chem. Commun. 47 (2011) 4252-4254.
-
[15]
[15] L.C. Yang, S.N. Wang, J.J. Mao, et al., Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries, Adv. Mater. 25 (2013) 1180-1184.
-
[16]
[16] L.R. Hu, Y.M. Ren, H.X. Yang, Q. Xu, Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications, ACS Appl. Mater. Interfaces 6 (2014) 14644-14652.
-
[17]
[17] T. Yang, Q. Guan, X.H. Guo, et al., Direct and freely switchable detection of target genes engineered by reduced graphene oxide-poly (m-aminobenzenesulfonic acid) nanocomposite via synchronous pulse electrosynthesis, Anal. Chem. 85 (2013) 1358-1366.
-
[1]
-
-
-
[1]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024
-
[2]
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
-
[3]
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
-
[4]
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
-
[5]
Xinyu Guo , Chang Li , Wenjun Deng , Yi Zhou , Yan Chen , Yushuang Xu , Rui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715
-
[6]
Zhijuan Niu , Peizhe Sun , Kwangnak Koh , Changping Li . Ultrasensitive electrochemical sensor based on para-sulfonatocalix[4]arene functionalized gold nanoparticles for sulfamethazine detection. Chinese Chemical Letters, 2025, 36(11): 110844-. doi: 10.1016/j.cclet.2025.110844
-
[7]
Chong Wang , Hao Xie , Rulan Xia , Xuewei Liao , Jin Wang , Huajun Yang , Chen Wang . Nanofluidic ion rectification sensor for enantioselective recognition and detection. Chinese Chemical Letters, 2025, 36(8): 110642-. doi: 10.1016/j.cclet.2024.110642
-
[8]
Yiyang Zhang , Guangshu Yuan , Xiangkun Meng , Xu Zhang , Lei Yu . Promoting the catalytic activities of polyanilines for L-lactic acid condensation by calcium-doping: A biocompatible strategy. Chinese Chemical Letters, 2025, 36(12): 111069-. doi: 10.1016/j.cclet.2025.111069
-
[9]
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
-
[10]
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
-
[11]
Xiujuan Qiao , Zhenying Xu , Zhen Wei , Yiting Hou , Fengxian Gao , Xijuan Yu , Xiliang Luo . A wearable electrochemical biosensor based on antifouling and conducting polyaniline hydrogel for cortisol detection in sweat. Chinese Chemical Letters, 2025, 36(11): 110884-. doi: 10.1016/j.cclet.2025.110884
-
[12]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[13]
Wei GUO , Zhuoyi GUO , Xiaoxin LI , Wei ZHANG , Juanzhi YAN , Tingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097
-
[14]
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
-
[15]
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
-
[16]
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
-
[17]
Xian-Rui Meng , Qian Chen , Mei-Feng Wu , Qiang Wu , Su-Qin Wang , Li-Ping Jin , Fan Zhou , Ren-Li Ma , Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543
-
[18]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[19]
Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148
-
[20]
Yayun Shi , Congcong Liu , Zhijun Zuo , Xiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1141)
- HTML views(11)
Login In
DownLoad: