Citation: Fei-Fei Li, Jun-Nan Gu, Xiao-Chun Zhou. Single molecule electro-catalysis of non-fluorescent molecule[J]. Chinese Chemical Letters, ;2015, 26(12): 1514-1517. doi: 10.1016/j.cclet.2015.09.013 shu

Single molecule electro-catalysis of non-fluorescent molecule

  • Corresponding author: Xiao-Chun Zhou, 
  • Received Date: 17 August 2015
    Available Online: 1 September 2015

  • Single molecule catalysis is very powerful in revealing catalytic mechanism at the single molecule level. But fluorescentmolecule is always necessary to take part into the catalysis directly in previous research. In order to study the single molecule electro-catalysis of non-fluorescentmolecule (SMECNFM) on nanocatalyst, we couple the SMECNFM with a single molecule fluorescence reaction. A certain number of fluorescent molecules will be generated and detected when the SMECNFM happens. Through this method, we can detect the electro-oxidation reaction of one HCOONamolecule. The stability of Pt nanocatalyst supported on active carbon is studied at the singlemolecule level by this method. This paper also provides a general way to make ultra-sensitive sensor, and to study the SMECNFM for the molecules, such as formic acid, hydrogen, oxygen, etc., on single nanoparticle.
  • 加载中
    1. [1]

      [1] X. Zhao, M. Yin, L. Ma, et al., Recent advances in catalysts for direct methanol fuel cells, Energy Environ. Sci. 4 (2011) 2736-2753.

    2. [2]

      [2] Z.H. Zhou, S.L. Wang, W.J. Zhou, et al., Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell, Chem. Commun. (2003) 394-395.

    3. [3]

      [3] Y. Zhu, Y. Kang, Z. Zou, et al., A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid, Electrochem. Commun. 10 (2008) 802-805.

    4. [4]

      [4] B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

    5. [5]

      [5] D. Chen, J. Li, Interfacial design and functionization on metal electrodes through self-assembled monolayers, Surf. Sci. Rep. 61 (2006) 445-463.

    6. [6]

      [6] J.B. Sperry, D.L.Wright, The application of cathodic reductions andanodic oxidations in the synthesis of complex molecules, Chem. Soc. Rev. 35 (2006) 605-621.

    7. [7]

      [7] H.P. Lu, L.Y. Xun, X.S. Xie, Single-molecule enzymatic dynamics, Science 282 (1998) 1877-1882.

    8. [8]

      [8] W. Xu, J.S. Kong, Y.T.E. Yeh, P. Chen, Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics, Nat. Mater. 7 (2008) 992-996.

    9. [9]

      [9] X. Zhou, N.M. Andoy, G. Liu, et al., Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts, Nat. Nano 7 (2012) 237-241.

    10. [10]

      [10] T. Tachikawa, T. Majima, Single-molecule fluorescence imaging of TiO2 photocatalytic reactions, Langmuir 25 (2009) 7791-7802.

    11. [11]

      [11] M.B.J. Roeffaers, B.F. Sels, H. Uji-i, et al., Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting, Nature 439 (2006) 572-575.

    12. [12]

      [12] W. Wang, J. Gu, T. He, et al., Optical super-resolution microscopy and its applications in nano-catalysis, Nano Res. 8 (2015) 441-455.

    13. [13]

      [13] W. Xu, H. Shen, Y.J. Kim, et al., Single-molecule electrocatalysis by single-walled carbon nanotubes, Nano Lett. 9 (2009) 3968-3973.

    14. [14]

      [14] X. Xiao, F.R.F. Fan, J. Zhou, A.J. Bard, Current transients in single nanoparticle collision events, J. Am. Chem. Soc. 130 (2008) 16669-16677.

    15. [15]

      [15] S.J. Kwon, F.R.F. Fan, A.J. Bard, Observing iridium oxide (IrOx) single nanoparticle collisions at ultramicroelectrodes, J. Am. Chem. Soc. 132 (2010) 13165- 13167.

    16. [16]

      [16] X. Xiao, A.J. Bard, Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification, J. Am. Chem. Soc. 129 (2007) 9610-9612.

    17. [17]

      [17] H. Zhou, J.H. Park, F.R.F. Fan, A.J. Bard, Observation of single metal nanoparticle collisions by open circuit (mixed) potential changes at an ultramicroelectrode, J. Am. Chem. Soc. 134 (2012) 13212-13215.

    18. [18]

      [18] X. Zhou, P. Chen, Application of optical super resolution imaging technology in single nanoparticle catalysis, in: 9th Sino-US Symposium on Nanoscale Science and Technology, Tianjin, 2014.

    19. [19]

      [19] K.S. Han, G. Liu, X. Zhou, R.E. Medina, P. Chen, How does a single pt nanocatalyst behave in two different reactions? A single-molecule study, Nano Lett. 12 (2012) 1253-1259.

  • 加载中
    1. [1]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    2. [2]

      Jinjiang WuZhenhua ZhuJinkui Tang . Recent advancements of photo-responsive lanthanide single-molecule magnets. Chinese Chemical Letters, 2025, 36(12): 110577-. doi: 10.1016/j.cclet.2024.110577

    3. [3]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    4. [4]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    5. [5]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    6. [6]

      Hao GuRui LiQiuying LiSheng LuYahui ChenXiaoning YangHuili MaZhijun XuXiaoqiang Chen . Multi-dimensional hydrogen bonds regulated emissions of single-molecule system enabling surficial hydrophobicity/hydrophilicity mapping. Chinese Chemical Letters, 2025, 36(5): 110116-. doi: 10.1016/j.cclet.2024.110116

    7. [7]

      Qian-Cheng LuoXia-Li DingWen-Jie XuYuan-Qi ZhaiYan-Zhen Zheng . Equatorial aminopyridine ligands stabilize an unusual straightly bridging mode in dimeric dysprosium(Ⅲ) single-molecule magnets. Chinese Chemical Letters, 2025, 36(9): 110304-. doi: 10.1016/j.cclet.2024.110304

    8. [8]

      Xiaoyu ZhaoKai GaoSen XueWei RanRui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309

    9. [9]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    10. [10]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    11. [11]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    12. [12]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    13. [13]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    14. [14]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    15. [15]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    16. [16]

      Junliang ZhouTian-Bing RenLin Yuan . The strategy to improve the brightness of organic small-molecule fluorescent dyes for imaging. Chinese Chemical Letters, 2025, 36(8): 110644-. doi: 10.1016/j.cclet.2024.110644

    17. [17]

      Yi-Ru BaiQing-Chuan DuanDong-Jie SengYing XuHong-Bo RenJie ZhangDan-Dan ShenLi YangHong-Min LiuShuo Yuan . A comprehensive review of small molecule drugs approved by the FDA in 2024: Advance and prospect. Chinese Chemical Letters, 2025, 36(10): 111025-. doi: 10.1016/j.cclet.2025.111025

    18. [18]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    19. [19]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    20. [20]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

Metrics
  • PDF Downloads(0)
  • Abstract views(1135)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return