Citation: Aamer Saeed, Pervaiz Ali Channar, Qasir Iqbal, Jamaluddin Mahar. C-H Arylation using acyl thiourea ligands:Applications in the synthesis of 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles[J]. Chinese Chemical Letters, ;2016, 27(01): 37-40. doi: 10.1016/j.cclet.2015.09.011 shu

C-H Arylation using acyl thiourea ligands:Applications in the synthesis of 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles

  • Corresponding author: Aamer Saeed, 
  • Received Date: 17 June 2015
    Available Online: 5 August 2015

  • Synthesis of a series of new 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles(5a-o) was achieved by phophine free, C-H arylative cross-coupling of 6-aryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles(4a-o) with suitably substituted iodoanilines using 1-(2-naphthoyl)-3-(4-bromophenyl)thiourea as a ligand. The requisite triazolothiadiazoles(4a-o) were obtained by the condensation of 4-amino-1,2,4-triazole-3-thiol(3) with suitably substituted aromatic acids in the presence of phosphoryl chloride.
  • 加载中
    1. [1]

      [1] R.F. Heck, J.P. Nolley Jr., Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides, J. Org. Chem. 37(1972) 2320-2322.

    2. [2]

      [2] T. Mizoroki, K. Mori, A. Ozaki, Arylation of olefin with aryl iodide catalyzed by palladium, Bull. Chem. Soc. Jpn. 44(1971) 581-587.

    3. [3]

      [3] C. Shen, P. Zhang, Q. Sun, et al., Recent advances in C-S bond formation via C-H bond functionalization and decarboxylation, Chem. Soc. Rev. 44(2015) 291-314.

    4. [4]

      [4] X. Cai, B. Xie, Recent advances in nickel-catalyzed C-H bond functionalized reactions, ARKIVOC(i)(2015) 184-211.

    5. [5]

      [5] Z.Q. Lin, W.Z. Wang, S.B. Yan, Palladium-catalyzed enantioselective CH arylation for the synthesis of P-stereogenic compounds, Angew. Chem. Int. Ed. 54(2015) 6265-6269.

    6. [6]

      [6] M. Moselage, N. Sauermann, S.C. Richter, et al., C-H alkenylations with alkenyl acetates, phosphates, carbonates, and carbamates by cobalt catalysis at 23℃, Angew. Chem. Int. Ed. 54(2015) 6352-6635.

    7. [7]

      [7] S. Protti, M. Fagnoni, D. Ravelli, Photocatalytic CH activation by hydrogen-atom transfer in synthesis, ChemCatChem 7(2015) 1516-1523.

    8. [8]

      [8] X. Sun, Y. Sun, Y. Rao, A gram-scale synthesis of multi-substituted arenes via palladium catalyzed C-H halogenation, Chin. Chem. Lett. 25(2014) 667-669.

    9. [9]

      [9] L.Y. Liu, Y.Z. Yan, Y.J. Bao, Z.Y. Wang, Efficient synthesis of 2-arylquinazolines via copper-catalyzed dual oxidative benzylic C-H aminations of methylarenes, Chin. Chem. Lett.(2015), http://dx.doi.org/10.1016/j.cclet.2015.07.008.

    10. [10]

      [10] D. Chen, H. Mo, D. Chen, J. Yang, Direct C-H amination for indole synthesis from NTs-2-styrylaniline derivatives catalyzed by copper salt, Chin. Chem. Lett. 26(2015) 969-972.

    11. [11]

      [11] D. Yang, Y. Chen, N. Zhu, Sterically bulky thioureas as air-and moisture-stable ligands for Pd-catalyzed Heck reactions of aryl halides, Org. Lett. 6(2004) 1577-1580.

    12. [12]

      [12] D. Mingji, B. Liang, C. Wang, et al., A novel thiourea ligand applied in the Pdcatalyzed Heck, Suzuki and Suzuki carbonylative reactions, Adv. Synth. Catal. 346(2004) 1669-1673.

    13. [13]

      [13] S. Keesara, S. Parvathaneni, M.R. Mandapati, N,N'-Mono substituted acyclic thioureas:efficient ligands for the palladium catalyzed Heck reaction of deactivated aryl bromides, Tetrahedron Lett. 55(2014) 6769-6772.

    14. [14]

      [14] S.M.I. Badr, R.M. Barwa, Synthesis of some new[1,2,4] triazolo[3,4-b][1,3,4] thiadiazines and[1,2,4] triazolo[3,4-b][1,3,4] thiadiazoles starting from 5-nitro-2-furoic acid and evaluation of their antimicrobial activity, Bioorg. Med. Chem. 19(2011) 4506-4512.

    15. [15]

      [15] R.D. Hunashal, D. Satyanarayana, One pot synthesis of 3-(substituted phenoxymethyl)-6-phenyl/substituted phenoxymethyl-1,2,4-triazolo[3,4-b][1,3,4] thiadiazole derivatives as antimicrobial agents, Int. J. Pharm. Biol. Sci. 3(2012) 183-192.

    16. [16]

      [16] A. Saeed, S. Ashraf, J.M. White, et al., Synthesis, X-ray crystal structure, thermal behavior and spectroscopic analysis of 1-(1-naphthoyl)-3-(halo-phenyl)-thioureas complemented with quantum chemical calculations, Spectrochim. Acta 143(2015) 59-66.

  • 加载中
    1. [1]

      Qiong-Hui PengNing-Bo LiJia-Cheng HouCai-Jun HeYa-Xin YangChun-Lin ZhuangLi-Juan OuMei YuanWei-Min He . Nd@g-C3N4 dual-functional photosynthesis and antitumor activities of 3-fluoroalkylated quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2025, 36(12): 111402-. doi: 10.1016/j.cclet.2025.111402

    2. [2]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    3. [3]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    4. [4]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    5. [5]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    6. [6]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    10. [10]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    13. [13]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    14. [14]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    15. [15]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    18. [18]

      Huahong ZHANGYang ZHAORui NINGShuixing WUXiaopeng ZHANG . Coordination equilibrium between cyclometalated Pt(Ⅱ) complexs [Pt(κ3-N^C^N′)(CNXyl)]Cl and [Pt(κ2-N^C^N′)(CNXyl)Cl]. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1840-1850. doi: 10.11862/CJIC.20250136

    19. [19]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    20. [20]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(0)
  • Abstract views(1142)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return