Citation: Lin Li, Cun-Long Zhang, Hong-Rui Song, Chun-Yan Tan, Huai-Wei Ding, Yu-Yang Jiang. Discovery of novel dual inhibitors of VEGFR and PI3K kinases containing 2-ureidothiazole scaffold[J]. Chinese Chemical Letters, ;2016, 27(01): 1-6. doi: 10.1016/j.cclet.2015.09.008 shu

Discovery of novel dual inhibitors of VEGFR and PI3K kinases containing 2-ureidothiazole scaffold

  • Corresponding author: Huai-Wei Ding,  Yu-Yang Jiang, 
  • Received Date: 22 April 2015
    Available Online: 15 May 2015

    Fund Project: The authors would like to thank the financial supports from the NSFC(No. 21272134) (No. 21272134)Shenzhen Municipal government SZSITIC(Nos. JCYJ20130402145002384, ZDSY20120619141412872). (Nos. JCYJ20130402145002384, ZDSY20120619141412872)

  • A series of compounds possessing 2-(3-phenyl)ureidothiazol-4-formamide derivatives with a 2-ureidothiazole scaffold were designed and synthesized. Some compounds demonstrated inhibition of cell proliferation against both MDA-MB-231 and HepG2 cell lines using Sorafenib as the positive control. Compounds 6i showed a good to moderate inhibition on VEGFR-2 and PI3Kα which was proved by further molecular docking study. This study suggests that compound 6i is a potential dual inhibitor of VEGFR-2 and PI3Kα and is applicable for further investigation.
  • 加载中
    1. [1]

      [1] M. Abdelrahim, S. Konduri, R. Basha, et al., Angiogenesis:an update and potential drug approaches(review), Int. J. Oncol. 36(2010) 5-18.

    2. [2]

      [2] P. Bhargava, M.O. Robinson, Development of second-generation VEGFR tyrosine kinase inhibitors:current status, Curr. Oncol. Rep. 13(2011) 103-111.

    3. [3]

      [3] P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases, Nature 407(2000) 249-257.

    4. [4]

      [4] K.M. Cook, W.D. Figg, Angiogenesis inhibitors:current strategies and future prospects, CA-Cancer J. Clin. 60(2010) 222-243.

    5. [5]

      [5] P.S. Sharma, R. Sharma, T. Tyagi, VEGF/VEGFR pathway inhibitors as anti-angiogenic agents:present and future, Curr. Cancer Drug Targets 11(2011) 624-653.

    6. [6]

      [6] J.A. Engelman, J. Luo, L.C. Cantley, The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism, Nat. Rev. Genet. 7(2006) 606-619.

    7. [7]

      [7] M.T. Burger, S. Pecchi, A. Wagman, et al., Identification of NVP-BKM120 as a potent, selective, orally bioavailable class I PI3 Kinase inhibitor for treating cancer, ACS Med. Chem. Lett. 2(2011) 774-779.

    8. [8]

      [8] Y.W. Zhao, L. Jin, Z.M. Li, et al., Enhanced antitumor efficacy by blocking activation of the phosphatidylinositol 3-kinase/Akt pathway during anti-angiogenesis therapy, Cancer Sci. 102(2011) 1469-1475.

    9. [9]

      [9] G.D. Thakker, D.P. Hajjar, W.A. Muller, et al., The role of phosphatidylinositol 3-kinase in vascular endothelial growth factor signaling, J. Biol. Chem. 274(1999) 10002-10007.

    10. [10]

      [10] G.R. Gao, J.L. Liu, D.S. Mei, et al., Design, synthesis and biological evaluation of acylhydrazone derivatives as PI3K inhibitors, Chin. Chem. Lett. 26(2015) 118-120.

    11. [11]

      [11] S. Brader, S.A. Eccles, Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis, Tumori 90(2004) 2-8.

    12. [12]

      [12] X.H. Ma, R. Wang, C.Y. Tan, et al., Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines, Mol. Pharm. 7(2010) 1545-1560.

    13. [13]

      [13] L.Y. Han, X.H. Ma, H.H. Lin, et al., A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor, J. Mol. Graph. Model. 26(2008) 1276-1286.

    14. [14]

      [14] D.M. Zhao, W.Y. Li, Y.F. Shi, et al., Pharmacophore-based design, synthesis, and biological evaluation of novel 3-((3,4-dichlorophenyl)(4-substituted benzyl)amino)propanamides as cholesteryl ester transfer protein(CETP) inhibitors, Chin. Chem. Lett. 25(2010) 299-304.

    15. [15]

      [15] F. Palagiano, L. Arenare, E. Luraschi, et al., ChemInform abstract:research on heterocyclic compounds, Part 34. Synthesis and SAR study of some imidazo(2,1-b)thiazole carboxylic and acetic acids with antiinflammatory and analgesic activities, ChemInform 27(1996).

    16. [16]

      [16] A.J. King, A.S. Judd, A.J. Souers, Inhibitors of Diacylglycerol Acyltransferase:a review of 2008 patents, Expert. Opin. Ther. Pat. 20(2010) 19-29.

    17. [17]

      [17] D.M. Swanson, C.R. Shah, B. Lord, et al., Heterocyclic replacement of the central phenyl core of diamine-based histamine H3 receptor antagonists, Eur. J. Med. Chem. 44(2009) 4413-4425.

    18. [18]

      [18] M.H. Potashman, J. Bready, A. Coxon, et al., Design, synthesis, and evaluation of orally active benzimidazoles and benzoxazoles as vascular endothelial growth factor-2 receptor tyrosine kinase inhibitors, J. Med. Chem. 50(2007) 4351-4373.

    19. [19]

      [19] S.D. Knight, N.D. Adams, J.L. Burgess, et al., Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin, ACS Med. Chem. Lett. 1(2010) 39-43.

  • 加载中
    1. [1]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    2. [2]

      Wenfeng ZangYixin SunJingyi ZhangYanzhong HaoQianhui JinHongying XiaoZuo ZhangXianbao ShiJin SunZhonggui HeCong LuoBingjun Sun . Two-tailed modification module tuned steric-hindrance effect enabling high therapeutic efficacy of paclitaxel prodrug nanoassemblies. Chinese Chemical Letters, 2025, 36(5): 110230-. doi: 10.1016/j.cclet.2024.110230

    3. [3]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    4. [4]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    5. [5]

      Shuheng ZhangYuanyuan ZhangWanyu WangYuzhu HuXinchuan ChenBilan WangXiang Gao . A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. Chinese Chemical Letters, 2024, 35(12): 109658-. doi: 10.1016/j.cclet.2024.109658

    6. [6]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    7. [7]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    8. [8]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    9. [9]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    10. [10]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    12. [12]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    13. [13]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    14. [14]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    15. [15]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    16. [16]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    17. [17]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    20. [20]

      Qin WangHan LuoLuli WangLing HuangLiling CaoXuehua DongGuohong Zou . KSb2F7·2KNO3: Unveiling the peak birefringence in inorganic antimony oxysalts. Chinese Chemical Letters, 2025, 36(7): 110173-. doi: 10.1016/j.cclet.2024.110173

Metrics
  • PDF Downloads(0)
  • Abstract views(1148)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return