Citation: Elham Tabrizian, Ali Amoozadeh, Salman Rahmani, Elham Imanifar, Saeede Azhari, Masoumeh Malmir. One-pot, solvent-free and efficient synthesis of 2,4,6-triarylpyridines catalyzed by nano-titania-supported sulfonic acid as a novel heterogeneous nanocatalyst[J]. Chinese Chemical Letters, ;2015, 26(10): 1278-1282. doi: 10.1016/j.cclet.2015.06.013 shu

One-pot, solvent-free and efficient synthesis of 2,4,6-triarylpyridines catalyzed by nano-titania-supported sulfonic acid as a novel heterogeneous nanocatalyst

  • Corresponding author: Ali Amoozadeh, 
  • Received Date: 26 February 2015
    Available Online: 8 June 2015

    Fund Project:

  • Nano titania-supported sulfonic acid (n-TSA) has found to be a highly efficient, eco-friendly and recyclable heterogeneous nanocatalyst for the solvent-free synthesis of 2, 4, 6-triarylpyridines through one-pot three-component reaction of acetophenones, aryl aldehydes and ammonium acetate. This reported method illustrates several advantages such as environmental friendliness reaction conditions, simplicity, short reaction time, easy work up, reusability of catalyst and high yields of the products. One new compound is reported too. Furthermore, the catalyst could be recycled after a simple work-up, and reused at least six times without substantial reduction in its catalytic activity.
  • 加载中
    1. [1]

      [1] R.W. Armstrong, A.P. Combs, P.A. Tempest, S.D. Brown, T.A. Keating, Multiplecomponent condensation strategies for combinatorial library synthesis, Acc. Chem. Res. 29(1996) 123-131.

    2. [2]

      [2] Y.A. Ibrahim, H. Behbehani, M.R. Ibrahim, Efficient atom economic approaches towards macrocyclic crownamides via ring closure metathesis, Tetrahedron Lett. 43(2002) 4207-4210.

    3. [3]

      [3] M. Sathishkumar, S. Nagarajan, P. Shanmugavelan, et al., One-pot regio/stereoselective synthesis of 2-iminothiazolidin-4-ones under solvent/scavenger-free conditions, Beilstein J. Org. Chem. 9(2013) 689-697.

    4. [4]

      [4] R.S. Varma, Solvent-free organic syntheses using supported reagents and microwave irradiation, Green Chem. 1(1999) 43-55.

    5. [5]

      [5] H. Naeimi, Z.S. Nazifi, Sulfonated diatomite as heterogeneous acidic nanoporous catalyst for synthesis of 14-aryl-14-H-dibenzo[a,j]xanthenes under green conditions, Appl. Catal. A 477(2014) 132-140.

    6. [6]

      [6] P. Sivaguru, A. Lalitha, Ceric ammonium nitrate supported HY-zeolite:an efficient catalyst for the synthesis of 18-dioxo-octahydroxanthenes, Chin. Chem. Lett. 25(2014) 321-323.

    7. [7]

      [7] P. Li, S. Regati, H.C. Huang, et al., A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions, Chin. Chem. Lett. 26(2015) 6-10.

    8. [8]

      [8] S.R. Jetti,A. Bhatewara, T. Kadre, S. Jain, Silica-bonded N-propyl sulfamic acid as an efficient recyclable catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under heterogeneous conditions, Chin. Chem. Lett. 25(2014) 469-473.

    9. [9]

      [9] S. Rahmani, A. Amoozadeh, E. Kolvari, Nano titania-supported sulfonic acid:an efficient and reusable catalyst for a range of organic reactions under solvent free conditions, Catal. Commun. 56(2014) 184-188.

    10. [10]

      [10] I.J. Enyedy, S. Sakamuri, W.A. Zaman, K.M. Johnson, S. Wang, Pharmacophorebased discovery of substituted pyridines as novel dopamine transporter inhibitors, Bioorg. Med. Chem. Lett. 13(2003) 513-517.

    11. [11]

      [11] B.Y. Kim, J.B. Ahn, H.W. Lee, et al., Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione, Eur. J. Med. Chem. 39(2004) 433-447.

    12. [12]

      [12] E.C. Constable, Metallodendrimers:metal ions as supramolecular glue, Chem. Commun. (1997) 1073-1080.

    13. [13]

      [13] E.C. Constable, E.L. Dunphy, C.E. Housecroft, et al., Structural development of free or coordinated 40-(4-pyridyl)-2, 20:60,200-terpyridine ligands through N-alkylation:new strategies for metallamacrocycle formation, Chem. Eur. J. 12(2006) 4600-4610.

    14. [14]

      [14] B.G.G. Lohmeijer, U.S. Schubert, Playing LEGO with macromolecules:design, synthesis, and self-organization with metal complexes, J. Polym. Sci. A:Polym. Chem. 41(2003) 1413-1427.

    15. [15]

      [15] F. Krohnke, The specific synthesis of pyridines and oligopyridines, Synthesis 1(1976) 1-24.

    16. [16]

      [16] G.W.V. Cave, C.L. Raston, Efficient synthesis of pyridines via a sequential solventless aldol condensation and Michael addition, J. Chem. Soc., Perkin Trans. 1(2001) 3258-3264.

    17. [17]

      [17] K.T. Potts, M.J. Cipullo, P. Ralli, G. Theodoridis, Synthesis of 2,6-disubstituted pyridines, polypyridinyls, and annulated pyridines, J. Org. Chem. 47(1982) 3027-3038.

    18. [18]

      [18] M. Wang, Z. Yang, Z. Song, Q. Wang, Three-component one-pot synthesis of 2,4,6-triarylpyridines without catalyst and solvent, J. Heterocycl. Chem. 52(2014) 907-910.

    19. [19]

      [19] A.R. Moosavi-Zare, M.A. Zolfigol, S. Farahmand, et al., Synthesis of 2,4,6-triarylpyridines using ZroCl2 under solvent-free conditions, Synlett 25(2014) 193-196.

    20. [20]

      [20] Z. Zarnegar, J. Safari, M. Borjian-borujeni, Ultrasound-mediated synthesis of 2,4,6-triaryl-pyridines using MgAl2O4 nanostructures, Chem. Heterocycl. Compd. (2015) 1-9.

    21. [21]

      [21] M. Reza, M. Shafiee, R. Moloudi, M. Ghashang, ZnO nanopowder:an efficient catalyst for the preparation of 2,4,6-triaryl pyridines under solvent-free condition, APCBEE Proc. 1(2012) 221-225.

    22. [22]

      [22] J. Safari, S. Gandomi-Ravandi, M. Borujeni, Green and solvent-free procedure for microwave-assisted synthesis of 2,4,6-triarylpyridines catalysed using MgAl2O4 nanocrystals, J. Chem. Sci. 125(2013) 1063-1070.

    23. [23]

      [23] A. Amoozadeh, E. Tabrizian, S. Rahmani, Nano titania-supported sulfonic acid catalyzed synthesis of α,α'-bis(substituted-benzylidene)cycloalkanones and their xanthene derivatives under solvent-free conditions, C. R. Chim. 18(2015) 848-857.

    24. [24]

      [24] A. Davoodnia, M. Bakavoli, R. Moloudi, N. Tavakoli-Hoseini, M. Khashi, Highly efficient, one-pot, solvent-free synthesis of 2,4,6-triarylpyridines using a Brønsted-acidic ionic liquid as reusable catalyst, Monatsh. Chem. Chem. Mon. 141(2010) 867-870.

    25. [25]

      [25] K.S. Vellayan Kannan, Montmorillonite K10 clay catalyzed one pot synthesis of 2,4,6-trisubstituted pyridine under solvent free condition, Mod. Res. Catal. 2(2013) 42-46.

    26. [26]

      [26] J. Safari, Z. Zarnegar, M. Borujeni, Mesoporous nanocrystalline MgAl2O4:a new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solventfree conditions, Chem. Pap. 67(2013) 688-695.

    27. [27]

      [27] P. Rajput, N.J.P. Subhashini, S. Raj, Synthesis of 2,4,6-triarylpyridines using AlPO4 under solvent-free conditions, J. Sci. Res. 2(2010) 337-342.

    28. [28]

      [28] K.S. Reddy, R.B. Reddy, K. Mukkanti, G. Thota, G. Srinivasulu, Synthesis of 2,4,6-triarylpyridines using TBAHS as a catalyst, Rasayan J. Chem. 4(2011) 299-302.

  • 加载中
    1. [1]

      Meihui Cai Yi Huang Xingxing Ma Qiuling Song . Exploring the Mysteries of the Petasis-Boronic Acid-Mannich Reaction. University Chemistry, 2025, 40(11): 184-190. doi: 10.12461/PKU.DXHX202412054

    2. [2]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    3. [3]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    4. [4]

      Xinyuan LiZhuozhu LiWenzhong HuangJiantao LiWei ZhangShihao FengHao FanZhuo ChenSungsik LeeCongcong CaiLiang Zhou . Solvent-free synthesis of Co single atom and nanocluster decorated N-doped carbon for efficient oxygen reduction. Chinese Chemical Letters, 2025, 36(9): 110716-. doi: 10.1016/j.cclet.2024.110716

    5. [5]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    6. [6]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    7. [7]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    8. [8]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    9. [9]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    10. [10]

      Xiangrong PanXixi HouYuhang DuZhixin PangShiyang HeLan WangJianxue YangLongfei MaoJianhua QinHaixia WuBaozhong LiuZhan ZhouLufang MaChaoliang Tan . Solvent-mediated synthesis of 2D In-TCPP MOF nanosheets for enhanced photodynamic antibacterial therapy. Chinese Chemical Letters, 2025, 36(12): 110536-. doi: 10.1016/j.cclet.2024.110536

    11. [11]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    12. [12]

      Haoyu LuoJinsong ChenMengfei LuoHui MaShengyan Pu . Heterogeneous Fenton catalytic degradation of nitrobenzene by controlled-release nano calcium peroxide. Chinese Chemical Letters, 2025, 36(6): 110367-. doi: 10.1016/j.cclet.2024.110367

    13. [13]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    14. [14]

      Jiaming LiNa XuYafei ZhangHongjun DongChunmei Li . Research progress of heterogeneous photocatalyst for H2O2 production: A mini review. Chinese Chemical Letters, 2025, 36(11): 110470-. doi: 10.1016/j.cclet.2024.110470

    15. [15]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    16. [16]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    17. [17]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    18. [18]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    19. [19]

      Xiaoyong ZHAIYao KOUPingru SUYu TANG . Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182

    20. [20]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

Metrics
  • PDF Downloads(0)
  • Abstract views(1181)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return