Citation:
Kun-Lun Xu, Bao-Hua Guo, Renate Reiter, Günter Reiter, Jun Xu. Simulation of secondary nucleation of polymer crystallization via a model of microscopic kinetics[J]. Chinese Chemical Letters,
;2015, 26(9): 1105-1108.
doi:
10.1016/j.cclet.2015.06.002
-
We present simulations of the mechanism of secondary nucleation of polymer crystallization, based on a new model accounting for the microscopic kinetics of attaching and detaching. As the key feature of the model, we introduced multibody-interaction parameters that establish correlations between the attaching and detaching rate constants and the resulting thickness and width of the crystalline lamella. Using MATLAB and Monte Carlomethod, we followed the evolution of the secondary nuclei as a function of various multibody-interaction parameters. We identified three different growth progressions of the crystal:(i) Widening, (ii) thickening and (iii) simultaneously thickening and widening of lamellar crystals, controlled by the corresponding kinetic parameters.
-
-
-
[1]
[1] J.I. Lauritzen, J.D. Hoffman, Theory of formation of polymer crystals with folded chains in dilute solution, J. Res. Natl. Bur. Stand. A:Phys. Ch. 64(1960) 73-102.
-
[2]
[2] J.D. Hoffman, J.I. Lauritzen, Crystallization of bulk polymers with chain folding-theory of growth of lamellar spherulites, J. Res. Natl. Bur. Stand. 65(1961) 297-336.
-
[3]
[3] J.I. Lauritzen, J.D. Hoffman, Extension of theory of growth of chain-folded polymer crystals to large undercoolings, J. Appl. Phys. 44(1973) 4340-4352.
-
[4]
[4] D.M. Sadler, G.H. Gilmer, Rate-theory model of polymer crystallization, Phys. Rev. Lett. 56(1986) 2708-2711.
-
[5]
[5] G.H. Gilmer, P. Bennema, Simulation of crystal growth with surface diffusion, J. Appl. Phys. 43(1972) 1347-1360.
-
[6]
[6] D.M. Sadler, G.H. Gilmer, Selection of lamellar thickness in polymer crystal growth:a rate-theory model, Phys. Rev. B 38(1988) 5684-5693.
-
[7]
[7] M.A. Spinner, R.W. Watkins, G. Goldbeck-Wood, Simulation of growth and surface roughening of polymer single crystals, J. Chem. Soc., Faraday Trans. 91(1995) 2587-2592.
-
[8]
[8] G. Reiter, J.U. Sommer, Crystallization of adsorbed polymer monolayers, Phys. Rev. Lett. 80(1998) 3771-3774.
-
[9]
[9] J.U. Sommer, G. Reiter, Polymer crystallization in quasi-two dimensions. II. Kinetic models and computer simulations, J. Chem. Phys. 112(2000) 4384-4393.
-
[10]
[10] J.U. Sommer, G. Reiter, Morphogenesis and nonequilibrium pattern formation in two-dimensional polymer crystallization, Phase Transit. 77(2004) 703-745.
-
[11]
[11] C.F. Luo, J.U. Sommer, Growth pathway and precursor states in single lamellar crystallization:MD simulations, Macromolecules 44(2011) 1523-1529.
-
[12]
[12] T.Y. Cho, W. Stille, G. Strobl, Zero growth temperature and growth kinetics of crystallizing poly(ε-caprolactone), Colloid Polym. Sci. 285(2007) 931-934.
-
[13]
[13] G. Strobl, T.Y. Cho, Growth kinetics of polymer crystals in bulk, Eur. Phys. J. E 23(2007) 55-65.
-
[14]
[14] W.B. Hu, Intramolecular crystal nucleation, in:G. Reiter, G.R. Strobl (Eds.), Progress in Understanding of Polymer Crystallization, Springer, Berlin, 2007, pp. 47-63.
-
[15]
[15] W.B. Hu, Chain folding in polymer melt crystallization studied by dynamic Monte Carlo simulations, J. Chem. Phys. 115(2001) 4395-4401.
-
[16]
[16] Q.Y. Tang, W.B. Hu, Molecular simulation of structural relaxation in ultrathin polymer films, Phys. Chem. Chem. Phys. 15(2013) 20679-20690.
-
[17]
[17] M.Q. Wang, H.H. Gao, L.Y. Zha, et al., Systematic kinetic analysis on monolayer lamellar crystal thickening via chain-sliding diffusion of polymers, Macromolecules 46(2013) 164-171.
-
[18]
[18] M. Muthukumar, Modeling polymer crystallization, in:G. Allegra (Ed.), Interphases and Mesophases in Polymer Crystallization III, Springer-Verlag, Berlin, 2005, pp. 241-274.
-
[19]
[19] M. Muthukumar, P. Welch, Modeling polymer crystallization from solutions, Polymer 41(2000) 8833-8837.
-
[20]
[20] R. Becker, W. Doring, Kinetic treatment of germ formation in supersaturated vapour, Ann. Phys. 24(1935) 719-752.
-
[21]
[21] D. Turnbull, J.C. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys. 17(1949) 71-73.
-
[22]
[22] D.M. Sadler, G.H. Gilmer, A model for chain folding in polymer crystals:rough growth faces are consistent with the observed growth rates, Polymer 25(1984) 1446-1452.
-
[23]
[23] B. Zhang, J.B. Chen, H. Zhang, et al., Annealing-induced periodic patterns in solution grown polymer single crystals, RSC Adv. 5(2015) 12974-12980.
-
[24]
[24] M. Hikosaka, Unified theory of nucleation of folded-chain crystals and extendedchain crystals of linear-chain polymers, Polymer 28(1987) 1257-1264.
-
[25]
[25] M. Hikosaka, K. Watanabe, K. Okada, S. Yamazaki, Topological mechanism of polymer nucleation and growth-the role of chain sliding diffusion and entanglement, Adv. Polym. Sci. 191(2005) 137-186.
-
[1]
-
-
-
[1]
Huimin Gao , Zhuochen Yu , Xuze Zhang , Xiangkun Yu , Jiyuan Xing , Youliang Zhu , Hu-Jun Qian , Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266
-
[2]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[3]
Shiyu Hou , Maolin Sun , Liming Cao , Chaoming Liang , Jiaxin Yang , Xinggui Zhou , Jinxing Ye , Ruihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761
-
[4]
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
-
[5]
Jinqi Yang , Xiaoxiang Hu , Yuanyuan Zhang , Lingyu Zhao , Chunlin Yue , Yuan Cao , Yangyang Zhang , Zhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128
-
[6]
Jun Zhang , Zhiyao Zheng , Can Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160
-
[7]
Jing REN , Ruikui YAN , Xiaoli CHEN , Huali CUI , Hua YANG , Jijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287
-
[8]
Jun Lu , Jinrui Yan , Yaohao Guo , Junjie Qiu , Shuangliang Zhao , Bo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876
-
[9]
Yarui Li , Huangjie Lu , Yingzhe Du , Jie Qiu , Peng Lin , Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562
-
[10]
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
-
[11]
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
-
[12]
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
-
[13]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[14]
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
-
[15]
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
-
[16]
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
-
[17]
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
-
[18]
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
-
[19]
Dong Lv , Xuelei Liu , Wei Li , Qiang Zhang , Xinhong Yu , Yanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401
-
[20]
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(799)
- HTML views(5)