Citation: Na Li, Rui Chen, Jing Miao, Peng Zhou, Hai-Bin Yu, Tie-Hong Chen. Synthesis of single crystal-like hierarchically mesoporous titanosilicate Ti-SBA-1[J]. Chinese Chemical Letters, ;2015, 26(10): 1269-1272. doi: 10.1016/j.cclet.2015.05.053 shu

Synthesis of single crystal-like hierarchically mesoporous titanosilicate Ti-SBA-1

  • Corresponding author: Tie-Hong Chen, 
  • Received Date: 16 April 2015
    Available Online: 22 May 2015

    Fund Project: RFDP (No. 20120031110005) (No. 13JCYBJC18300) the Technology Planning Project of Hunan Province (No. 2014SK2019) (No. 20120031110005) National Science Foundation for Post-doctoral Scientists of China (No. 2014T70774) (No. 2014SK2019)the Scientific Research Fund of Hunan Provincial Education Department (No. 14C0343). (No. 2014T70774)

  • Hierarchically mesoporous titanosilicate Ti-SBA-1 was synthesized with organic mesomorphous complexes of polyelectrolyte (poly(acrylic acid) (PAA)) and cationic surfactant (hexadecyl pyridinium chloride (CPC)) as template, tetraethylsiloxane as silica source and titanium ethoxide as titanium source. By adjusting the amount of titanium ethoxide in the synthesis, a series of Ti-SBA-1 particles with different Si/Ti ratio (79-180) were prepared. After incorporation of Ti into the silica framework thewellordered cubic Pm3n mesostructure remained, as well as the morphology, particle size. UV-vis DR spectra of the Ti-SBA-1 materials indicated that incorporated titaniumspecies existed in a highly dispersed state and exhibited tetrahedral and octahedral coordination in the silica framework.
  • 加载中
    1. [1]

      [1] J. Wei, Q. Yue, Z.K. Sun, Y.H. Deng, D.Y. Zhao, Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates, Angew. Chem. Int. Ed. 51(2012) 6149-6153.

    2. [2]

      [2] H.M. Abdelaal, Fabrication of hollow silica microspheres utilizing a hydrothermal approach, Chin. Chem. Lett. 25(2014) 627-629.

    3. [3]

      [3] L.P. Wang, G. Li, W.Z. Li, et al., Copolymers with fluorescence properties in mesoporous silica SBA-15:synthesis and characterization, Chin. Chem. Lett. 25(2014) 1620-1624.

    4. [4]

      [4] S. Che, A.E. Garcia-Bennett, T. Yokoi, et al., A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure, Nat. Mater. 2(2003) 801-805.

    5. [5]

      [5] C.B. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki, S. Che, Synthesis and characterization of mesoporous silica AMS-10 with bicontinuous cubic Pn3m symmetry, Angew. Chem. Int. Ed. 45(2006) 4295-4298.

    6. [6]

      [6] K. Venkatachalam, M. Palanichamy, V. Murugesan, Acetalization of heptanal over Al-SBA-1 molecular sieve, Catal. Commun. 12(2010) 299-303.

    7. [7]

      [7] S. Wu, Y. Han, Y.C. Zou, et al., Synthesis of heteroatom substituted SBA-15 by the "pH-adjusting" method, Chem. Mater. 16(2004) 486-492.

    8. [8]

      [8] F.J. Chen, C.W. Shao, M.N. Zhao, et al., Controllable synthesis and photocatalytic activities of rod-shaped mesoporous titanosilicate composites with varied aspect ratios, Chin. Chem. Lett. 25(2014) 962-966.

    9. [9]

      [9] W.J. Cai, L.P. Qian, B. Yue, H.Y. He, Rh doping effect on coking resistance of Ni/SBA-15 catalysts in dry reforming of methane, Chin. Chem. Lett. 25(2014) 1411-1415.

    10. [10]

      [10] M. Taramasso, G. Perego, B. Notari, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, U.S. Patent 4410501, 1983.

    11. [11]

      [11] M.J. Kim, R. Ryoo, Synthesis and pore size control of cubic mesoporous silica SBA-1, Chem. Mater. 11(1999) 487-491.

    12. [12]

      [12] A.E. Garcia-Bennett, K. Miyasaka, O. Terasaki, S. Che, Structural solution of mesocaged material AMS-8, Chem. Mater. 16(2004) 3597-3605.

    13. [13]

      [13] Y. Sakamoto, M. Kaneda, O. Terasaki, et al., Direct imaging of the pores and cages of three-dimensional mesoporous materials, Nature 408(2000) 449-453.

    14. [14]

      [14] T.W. Kim, R. Ryoo, M. Kruk, et al., Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time, J. Phys. Chem. B 108(2004) 11480-11489.

    15. [15]

      [15] S.D. Shen, Y. Deng, G.B. Zhu, et al., Synthesis and characterization of Ti-SBA-16 ordered mesoporous silica composite, J. Mater. Sci. 42(2007) 7057-7061.

    16. [16]

      [16] Q.S. Huo, R. Leon, P.M. Petroff, G.D. Stucky, Mesostructure design with Gemini surfactants:supercage formation in a three-dimensional hexagonal array, Science 268(1995) 1324-1327.

    17. [17]

      [17] A. Vinu, V. Murugesan, M. Hartmann, Pore size engineering and mechanical stability of the cubic mesoporous molecular sieve SBA-1, Chem. Mater. 15(2003) 1385-1393.

    18. [18]

      [18] D. Ji, R. Zhao, G.M. Lv, et al., Direct synthesis, characterization and catalytic performance of novel Ti-SBA-1 cubic mesoporous molecular sieves, Appl. Catal. A:Gen. 281(2005) 39-45.

    19. [19]

      [19] A. Vinu, P. Srinivasu, D.P. Sawant, et al., Fabrication and morphological control of three-dimensional cage type mesoporous titanosilicate with extremely high Ti content, Microporous Mesoporous Mater. 110(2008) 422-430.

    20. [20]

      [20] X. Du, J.H. He, Spherical silica micro/nanomaterials with hierarchical structures:synthesis and applications, Nanoscale 3(2011) 3984-4002.

    21. [21]

      [21] Z.L. Hua, J. Zhou, J.L. Shi, Recent advances in hierarchically structured zeolites:synthesis and material performances, Chem. Commun. 47(2011) 10536-10547.

    22. [22]

      [22] M.X. Liu, L.H. Gan, Y. Li, et al., Synthesis and electrochemical performance of hierarchical porous carbons with 3D open-cell structure based on nanosilicaembedded emulsion-templated polymerization, Chin. Chem. Lett. 25(2014) 897-901.

    23. [23]

      [23] Z. Zhou, R.N.K. Taylor, S. Kullmann, H.X. Bao, M. Hartmann, Mesoporous organosilicas with large cage-like pores for high efficiency immobilization of enzymes, Adv. Mater. 23(2011) 2627-2632.

    24. [24]

      [24] N. Li, J.G. Wang, H.J. Zhou, P.C. Sun, T.H. Chen, Synthesis of single-crystal-like, hierarchically nanoporous silica and periodic mesoporous organosilica, using polyelectrolyte-surfactant mesomorphous complexes as a template, Chem. Mater. 23(2011) 4241-4249.

    25. [25]

      [25] G. Li, X.S. Zhao, Characterization and photocatalytic properties of titaniumcontaining mesoporous SBA-15, Ind. Eng. Chem. Res. 45(2006) 3569-3573.

  • 加载中
    1. [1]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    2. [2]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    3. [3]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    4. [4]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    5. [5]

      Jinkun LiuXuelian YangWenxuan ChenPingan ZhuGuanglei WuJing ZhengXu Hou . Hierarchical work function programming for optimizing interfacial polarization in electromagnetic wave absorber. Chinese Chemical Letters, 2025, 36(10): 111293-. doi: 10.1016/j.cclet.2025.111293

    6. [6]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    7. [7]

      Mengwei YeQingqing XuHuanhuan JianYiduo DingWenpeng ZhaoChenxiao WangJunya LuShuaipeng FengSiling WangQinfu Zhao . Recent trends of biodegradable mesoporous silica based nanoplatforms for enhanced tumor theranostics. Chinese Chemical Letters, 2025, 36(6): 110221-. doi: 10.1016/j.cclet.2024.110221

    8. [8]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    9. [9]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    10. [10]

      Kun YangAnhui LiPeng ZhangGuilin LiuLiusai HuangYumeng FoLuyuan YangXiangyang JiJian LiuWeiyu Song . Hierarchical zeolites stabilized cobalt(Ⅱ) as propane dehydrogenation catalyst: Enhanced activity and coke tolerance via alkaline post-treatment. Chinese Chemical Letters, 2025, 36(5): 110663-. doi: 10.1016/j.cclet.2024.110663

    11. [11]

      Chupeng LuoKeying SuShan YangYujia LiangYawen TangXiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940

    12. [12]

      Xingchen LiLin GuanXiaoli LiXiaolan OuWenlai GuoAndrei V. ZvyaginWenrui QuBai YangQuan Lin . A hierarchical hydrogel dressing with continuous biochemical gradient for immunoregulation, nerve repair and angiogenesis of refractory diabetes wounds. Chinese Chemical Letters, 2025, 36(9): 110661-. doi: 10.1016/j.cclet.2024.110661

    13. [13]

      Ming-Ming GanZi-En ZhangXin LiF. Ekkehardt HahnYing-Feng Han . Hierarchical self-assembly of fluorinated poly-N-heterocyclic carbene pillarplexes with anions. Chinese Chemical Letters, 2025, 36(10): 110624-. doi: 10.1016/j.cclet.2024.110624

    14. [14]

      Hao HuJiacheng WangSi ZhangBen ZhangCuinan JiangHong TianXunxin GuYang ShengZhenghuan ZhaoMeng LiLu ZhengJing Li . Hierarchical and flexible electrode with precise H2-production for in vivo liver cancer therapy. Chinese Chemical Letters, 2025, 36(12): 110866-. doi: 10.1016/j.cclet.2025.110866

    15. [15]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    16. [16]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    17. [17]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    18. [18]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    19. [19]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    20. [20]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

Metrics
  • PDF Downloads(0)
  • Abstract views(1138)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return