Citation: Yao Chen, Xin-Wei Dou, Meng-Meng Zhang, Xuan Lu, Yu-Jun Qin, Pu Zhang, Zhi-Xin Guo. The fabrication of flower-like graphene/octadecylamine composites[J]. Chinese Chemical Letters, ;2015, 26(9): 1144-1146. doi: 10.1016/j.cclet.2015.05.045 shu

The fabrication of flower-like graphene/octadecylamine composites

  • Corresponding author: Yu-Jun Qin,  Zhi-Xin Guo, 
  • Received Date: 3 April 2015
    Available Online: 11 May 2015

    Fund Project:

  • Three-dimensional flower-like nanomaterials have wide application due to the large specific surface area. In this letter, the morphology of octadecylamine (ODA) from several common solvents is studied and it is found that from the chloroform and acetone solution, ODA assembles into petal-like structure, which further forms the spherical or flower-like architecture. Furthermore, the composite materials incorporated reduced graphene oxide (rGO) and ODA could well keep the flower-shaped structure of ODA. XRD results show that the introduction of graphene has little influence on the structure of ODA and contact angle test indicates good hydrophobic performance of the rGO/ODA material.
  • 加载中
    1. [1]

      [1] W.L. Noorduin, A. Grinthal, L. Mahadevan, J. Aizenberg, Rationally designed complex, hierarchical microarchitectures, Science 340(2013) 832-837.

    2. [2]

      [2] C.J. Martinez, B. Hockey, C.B. Montgomery, S. Semancik, Porous tin oxide nanostructured microspheres for sensor applications, Langmuir 21(2005) 7937-7944.

    3. [3]

      [3] Z.H. Bao, M.R. Weatherspoon, S. Shian, et al., Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature 446(2007) 172-175.

    4. [4]

      [4] Z.Y. Wang, L. Zhou, X.W. Lou, Metal oxide hollow nanostructures for lithium-ion batteries, Adv. Mater. 24(2012) 1903-1911.

    5. [5]

      [5] D. Peer, J.M. Karp, S. Hong, et al., Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol. 2(2007) 751-760.

    6. [6]

      [6] T. Nakanishi, K. Ariga, T. Michinobu, et al., Flower-shaped supramolecular assemblies:hierarchical organization of a fullerene bearing long aliphatic chains, Small 3(2007) 2019-2023.

    7. [7]

      [7] X. Zhang, M. Takeuchi, Controlled fabrication of fullerene C60 into microspheres of nanoplates through porphyrin-polymer-assisted self-assembly, Angew. Chem. Int. Ed. 48(2009) 9646-9651.

    8. [8]

      [8] B.I. Kharisov, A review for synthesis of nanoflowers, Recent Pat. Nanotechnol. 2(2008) 190-200.

    9. [9]

      [9] Y.H. Sun, P.P. Dong, X. Lang, J.M. Nan, A novel rose flower-like SnO hierarchical structure synthesized by a hydrothermal method in an ethanol/water system, Chin. Chem. Lett. 25(2014) 915-918.

    10. [10]

      [10] Y. Wang, Z.M. Liu, B.X. Han, et al., Fabrication of flowerlike polymer superstructures using polymer/zeolite composites prepared with supercritical CO2, J. Phys. Chem. B 109(2005) 2605-2609.

    11. [11]

      [11] C.Q. Zhou, J. Han, R. Guo, Controllable synthesis of polyaniline multidimensional architectures:from plate-like structures to flower-like superstructures, Macromolecules 41(2008) 6473-6479.

    12. [12]

      [12] H. Zhao, X.R. Guo, S.L. He, et al., Complex self-assembly of pyrimido[4,5-d]pyrimidine nucleoside supramolecular structures, Nat. Commun. 5(2014) 3108.

    13. [13]

      [13] K. Zhang, A. Geissler, X.L. Chen, et al., Polymeric flower-like microparticles from self-assembled cellulose stearoyl esters, ACS Macro Lett. 4(2015) 214-219.

    14. [14]

      [14] J. Ge, J.D. Lei, R.N. Zare, Protein-inorganic hybrid nanoflowers, Nat. Nanotechnol. 7(2012) 428-432.

    15. [15]

      [15] Y.L. Lee, Surface characterization of octadecylamine films prepared by Langmuir-Blodgett and vacuum deposition methods by dynamic contact angle measurements, Langmuir 15(1999) 1796-1801.

    16. [16]

      [16] Y.F. Xu, D.K. Ma, X.A. Chen, D.P. Yang, S.M. Huang, Bisurfactant-controlled synthesis of three-dimensional YBO3/Eu3+ architectures with tunable wettability, Langmuir 25(2009) 7103-7108.

    17. [17]

      [17] J.J. Benitez, M.A. San-Miguel, S. Dominguez-Meister, J.A. Heredia-Guerrero, M. Salmeron, Structure and chemical state of octadecylamine self-assembled monolayers on mica, J. Phys. Chem. C 115(2011) 19716-19723.

    18. [18]

      [18] J.L. Zou, F. Kim, Diffusion driven layer-by-layer assembly of graphene oxide nanosheets into porous three-dimensional macrostructures, Nat. Commun. 5(2014) 5254.

    19. [19]

      [19] Z.Y. Lin, Y. Liu, C.P. Wong, Facile fabrication of superhydrophobic octadecylaminefunctionalized graphite oxide film, Langmuir 26(2010) 16110-16114.

    20. [20]

      [20] S. Choudhary, H.P. Mungse, O.P. Khatri, Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications, J. Mater. Chem. 22(2012) 21032-21039.

    21. [21]

      [21] Z.L. Chen, F.Y. Kam, V. Keerthi, et al., Efficient surfactant-free and chemical reductant-free solvothermal deoxidation of solution-processable sub-stoichiometric graphene oxide, J. Mater. Chem. C 1(2013) 7246-7254.

    22. [22]

      [22] J.H. Xu, M. Li, Y. Zhao, Q.H. Lu, Advance of wetting behavior research on the superhydrophobic surface with micro- and nano-structures, Prog. Chem. 18(2006) 1425-1433.

    23. [23]

      [23] K.G. Patil, V. Santhanam, S.K. Biswas, K.G. Ayappa, Combined atomic force microscopy and modeling study of the evolution of octadecylamine films on a mica surface, J. Phys. Chem. C 114(2010) 3549-3559.

  • 加载中
    1. [1]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    2. [2]

      Shiyan AiYaning XuHui ZhouZiwei CuiTiantian WuDan Tian . Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water. Chinese Chemical Letters, 2025, 36(10): 110761-. doi: 10.1016/j.cclet.2024.110761

    3. [3]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    4. [4]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    5. [5]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    6. [6]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    7. [7]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    8. [8]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    9. [9]

      Huifang MaTao XuSaifei YuanShujuan LiJiayao WangYuping ZhangHao RenShulai Lei . Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces. Chinese Chemical Letters, 2025, 36(8): 110219-. doi: 10.1016/j.cclet.2024.110219

    10. [10]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    11. [11]

      Ning LiuMan TianYe ZhangJinming YangZhihao WangWangxi DaiGuixiang QuanJianqiu LeiXiaodong ZhangLiang Tang . Three-dimensional MIL-88A(Fe)-derived α-Fe2O3 and graphene composite for efficient photo-Fenton-like degradation of ciprofloxacin. Chinese Chemical Letters, 2025, 36(12): 111063-. doi: 10.1016/j.cclet.2025.111063

    12. [12]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    13. [13]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    14. [14]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    15. [15]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    16. [16]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    17. [17]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    18. [18]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    19. [19]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    20. [20]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

Metrics
  • PDF Downloads(0)
  • Abstract views(1263)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return