Citation: Tian-Tian Meng, Ying-Xin Liu, Meng-Tan Liu, Jiao-Bao Long, Qing-Feng Cao, Shu-Ya Yan, Xiang-Xian Meng. Lineal DNA logic gate for microRNA diagnostics with strand displacement and fluorescence resonance energy transfer[J]. Chinese Chemical Letters, ;2015, 26(9): 1179-1182. doi: 10.1016/j.cclet.2015.05.039 shu

Lineal DNA logic gate for microRNA diagnostics with strand displacement and fluorescence resonance energy transfer

  • Corresponding author: Xiang-Xian Meng, 
  • Received Date: 20 January 2015
    Available Online: 21 April 2015

    Fund Project: This work is supported by National Natural Science Foundation of China (No. 21275043) (No. 21275043)National Basic Research Program of China under Grants (No. 2009CB421601). (No. 2009CB421601)

  • Designing molecular logic gates to operate programmably for molecular diagnostics in molecular computing still remains challenging. Here, we designed a novel linear DNA logic gates for microRNA analysis based on strand displacement and fluorescence resonance energy transfer (FRET). Two labeled strands closed each other produce to FRET through hybridization with a complementary strand to form a basic work unit of logic gate. Two indicators of heart failure (microRNA-195 and microRNA-21) were selected as the logic inputs and the fluorescence mode was used as the logic output. We have demonstrated that the molecular logic gate mechanism worked well with the construction of YES and AND gates.
  • 加载中
    1. [1]

      [1] Y. Benenson, T. Paz-Elizur, R. Adar, et al., Programmable and autonomous computing machine made of biomolecules, Nature 414(2001) 430-434.

    2. [2]

      [2] M. Privman, T.K. Tam, M. Pita, E. Katz, Switchable electrode controlled by enzyme logic network system:approaching physiologically regulated bioelectronics, J. Am. Chem. Soc. 131(2009) 1314-1321.

    3. [3]

      [3] D.F. Wang, Y.M. Fu, J. Yan, et al., Molecular logic gates on DNA origami nanostructures for MicroRNA diagnostics, Anal. Chem. 86(2014) 1932-1936.

    4. [4]

      [4] B. Gil, M. Kahan-Hanum, N. Skirtenko, R. Adar, E. Shapiro, Detection of multiple disease indicators by an autonomous biomolecular computer, Nano Lett. 11(2011) 2989-2996.

    5. [5]

      [5] T. Omabegho, R.J. Sha, N.C. Seeman, A bipedal DNA Brownian motor with coordinated legs, Science 324(2009) 67-71.

    6. [6]

      [6] L.X. Mu, W.X. Shi, G.W. She, J.C. Chang, S.T. Lee, Fluorescent logic gates chemically attached to silicon nanowires, Angew. Chem. Int. Ed. 48(2009) 1-4.

    7. [7]

      [7] J. Yang, L.J. Shen, J.J. Ma, et al., Fluorescent nanoparticle beacon for logic gate operation regulated by strand displacement, ACS Appl. Mater. 5(2013) 5392-5396.

    8. [8]

      [8] J.B. Zhu, L.B. Zhang, T. Li, S.J. Dong, E.K. Wang, Enzyme-free unlabeled DNA logic circuits based on toehold-mediated strand displacement and split G-quadruplex enhanced fluorescence, Adv. Mater. 25(2013) 2440-2444.

    9. [9]

      [9] X.Q. Liu, R. Aizen, R. Freeman, O. Yehezkeli, I. Willner, Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide:application for logic gate operations, ACS Nano 6(2012) 3553-3563.

    10. [10]

      [10] C. Zhang, J. Yang, J. Xu, Circular DNA logic gates with strand displacement, Langmuir 26(2010) 1416-1419.

    11. [11]

      [11] M. Moshe, J. Elbaz, I. Willner, Sensing of UO22+ and design of logic gates by the application of supramolecular constructs of iondependent DNA zymes, Nano Lett. 9(2009) 1196-1202.

    12. [12]

      [12] H. Pei, L. Liang, G.B. Yao, et al., Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors, Angew. Chem. 124(2012) 9154-9158.

    13. [13]

      [13] Z.F. Gao, Y. Ling, L. Lu, et al., Detection of single-nucleotide polymorphisms using an ON-OFF switching of regenerated biosensor based on a locked nucleic acidintegrated and toehold-mediated strand displacement reaction, Anal. Chem. 86(2014) 2543-2548.

    14. [14]

      [14] J. Zhu, Y.S. Ding, X.T. Liu, L. Wang, W. Jiang, Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation, Biosens. Bioelectr. 59(2014) 276-281.

    15. [15]

      [15] Y.S. Jiang, S. Bhadra, B.L. Li, A.D. Ellington, Mismatches improve the performance of strand-displacement nucleic acid circuits, Angew. Chem. Int. Ed. 53(2014) 1845-1848.

    16. [16]

      [16] V. Ambros, The functions of animal microRNAs, Nature 431(2004) 350-355.

    17. [17]

      [17] R.C. Friedman, K.K.H. Farh, C.B. Burge, D.P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res. 19(2009) 92-105.

    18. [18]

      [18] R. Schickel, B. Boyerinas, S.M. Park, M.E. Peter, MicroRNAs:key players in the immune system, differentiation, tumorigenesis and cell death, Oncogene 27(2008) 5959-5974.

    19. [19]

      [19] E. Van Rooij, L.B. Sutherland, N. Liu, et al., A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure, Proc. Natl. Acad. Sci. U. S. A. 103(2006) 18255-18260.

    20. [20]

      [20] T. Thum, P. Galuppo, C. Wolf, et al., MicroRNAs in the human heart, Circulation 116(2007) 258-267.

  • 加载中
    1. [1]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    2. [2]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    3. [3]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    4. [4]

      Kuangdi LuoYang QinXuehao ZhangHanxu JiHeao ZhangJiangtian LiXianjin XiaoXinyu Wang . Regulable toehold lock for the effective control of strand displacement reaction sequence and circuit leakage. Chinese Chemical Letters, 2024, 35(7): 109104-. doi: 10.1016/j.cclet.2023.109104

    5. [5]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    6. [6]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    7. [7]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    8. [8]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    9. [9]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    10. [10]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    11. [11]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    12. [12]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

    13. [13]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    14. [14]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    15. [15]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    16. [16]

      Yusong BiRongzhen ZhangKaikai NiuShengsheng YuHui LiuLingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311

    17. [17]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    18. [18]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    19. [19]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    20. [20]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

Metrics
  • PDF Downloads(0)
  • Abstract views(785)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return